用户名: 密码: 验证码:
海洋暖涡对“威马逊”(2014)影响的观测和模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Observational and numerical study of impacts of ocean warm eddy on Rammasun (2014)
  • 作者:杨薇 ; 蔡亲波 ; 李勋 ; 程守长
  • 英文作者:YANG Wei;CAI Qinbo;LI Xun;CHENG Shouchang;Meteorological Observatory of Hainan Province;
  • 关键词:热带气旋 ; 耦合模式 ; 海平面高度异常 ; 热带气旋潜热
  • 英文关键词:tropical cyclone;;coupled model;;sea surface height anomaly;;tropical
  • 中文刊名:ZRZH
  • 英文刊名:Journal of Natural Disasters
  • 机构:海南省气象台;
  • 出版日期:2019-02-15
  • 出版单位:自然灾害学报
  • 年:2019
  • 期:v.28
  • 基金:国家科技支撑计划课题(2013BAK05B03);; 国家自然科学基金项目(41365005)~~
  • 语种:中文;
  • 页:ZRZH201901020
  • 页数:10
  • CN:01
  • ISSN:23-1324/X
  • 分类号:167-176
摘要
本文利用多元卫星遥感资料和上海台风所的最佳路径资料,分析了南海暖涡对超强台风"威马逊"的影响,观测表明:"威马逊"在快速加强期间,先后从两个暖涡(WOE1和WOE2)的边缘穿过,中心最低气压在30 h内下降了60 hPa,对应暖涡的区域,海平面温度(SST)高于30℃,海表高度异常(SSHA)大于30 cm,热带气旋潜热(TCHP)大于100 kJ/cm~2,并具有70 m以上的深厚暖层。进一步采用中尺度大气模式WRF与区域海洋模式POM构造的中尺度海气耦合模式,模拟研究了海洋暖涡对"威马逊"的影响。与观测结果对比,尽管模拟台风最大强度与观测比较仍有一定差距,但模拟结果能较合理地模拟出台风中心气压和最大风速的变化特征。对比敏感性试验结果表明,虽然暖涡的存在并不是台风快速加强的充分条件,但暖涡使得海洋向大气输送的表面热通量增加,特别是对应近岸的WOE1海域,具有更高的SSHA和热带气旋潜热,台风中心区域的平均潜热通量也增加了40%以上,是使台风快速加强能达到更大强度的重要影响因子。
        The combined Analyses of satellite altimetry and observations are used to investigate the impact of warm eddy on Supertyphoon Rammasun over the South China Sea. The observation results show that Rammasun passes over edges of two warm eddies(WOE1 and WOE2) successively over the north of South China Sea. During the 30 h of the Rammasun-eddies encounter, Rammasun's minimum sea level pressure drops by 60 hPa. In the regions of warm ocean eddies, the sea surface temperature(SST) was more than 30℃, the sea surface height anomaly(SSHA) was higher than 30 cm, the tropical cyclone heat potential(TCHP) was larger than 100 kJ/cm~2 and a thick warm water reached over 70 m. Meanwhile, a mesoscale coupled air-sea model based on the non-hydrostatic mesoscale model WRF and the regional ocean model POM are carried out to investigate the effects of warm eddy on Rammasun. Though the peak intensity is simulated a bit small as compared to the observation, the model captures the variation characteristics of minimum surface pressure and maximum surface wind. Model sensitivity study reveals that Warm Eddies increase the surface heat fluxes from ocean to atmosphere, especially the latent heat fluxes. The higher SSHA and TCHP are found in the areas of WOE1, while the averaged total heat fluxes in the inner-core region of the typhoon increase by over 40%, which contributes to further greater peak intensity but are not necessary for rapid intensification.
引文
[1] Malkus J S, Riehl H. On the dynamics and energy transformations in steady-state hurricanes[J]. Tellus, 1960, 12(1): 1-20.
    [2] Emanuel K A. The maximum intensity of hurricanes[J]. J Atmos Sci, 1988, 45(7): 1143-1155.
    [3] Emanuel K A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance[J]. J Atmos Sci, 1986, 43(6): 585-605.
    [4] Emanuel K A, Desautels C, Holloway C, et al. Environmental control of tropical cyclone intensity[J]. J Atmos Sci, 2004, 61(7): 843-858.
    [5] 端义宏, 余晖, 伍荣生. 热带气旋强度变化研究进展[J]. 气象学报, 2005, 63(5): 636-645.DUAN Yihong, YU Hui, WU Rongsheng. Review of research in the intensity change of Tropical Cyclone[J]. Acta Meteorologica Sinica, 2005, 63(5): 636-645. (in Chinese)
    [6] Wu C C, Lee C Y, Lin I I. The effect of the ocean eddy on tropical cyclone intensity[J]. J Atmos Sci, 2007, 64(10): 3562-3578.
    [7] Namias J, Cayan D R. Large-scale air-sea interactions and short-period climatic fluctuations[J]. Science, 1981, 214(4523): 869-76.
    [8] Goni G J, Trianaes J A. Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones[J]. Eos Trans Ame Geophys Union, 2003, 84(51): 573-578.
    [9] Lin I I, Chou M D, Wu C C. The Impact of a warm ocean eddy on Typhoon Morakot (2009): A preliminary study from satellite observations and numerical modeling[J]. Terr Atmos Ocean Sci, 2011, 22(6): 661-671.
    [10] Ali M M, Jagadeesh P S V, Lin I I, et al. A neural network approach to estimate tropical cyclone heat potential in the Indian Ocean[J]. IEEE Geosci Remote S, 2012, 9(6): 1114-1117.
    [11] Nagamani P V, Ali M M, Goni G J, et al. Validation of satellite-derived tropical cyclone heat potential with in situ observations in the North Indian Ocean[J]. Remote Sens Lett, 2013, 3(3): 615-620.
    [12] Shay L K, Goni G J. Black P G. Effects of a warm oceanic feature on Hurricane Opal[J]. Mon Wea Rev, 2000, 128(5): 1366-1383.
    [13] Lin I I, Wu C C, Emanuel K A, et al. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy[J]. Mon Wea Rev, 2005, 133(9): 2635-2649.
    [14] Ali M M, Jagadeesh P S V, Jain S. Effects of eddies on Bay of Bengal cyclone intensity[J]. Eos Trans Ame Geophys Union, 2007, 8(8): 93-95.
    [15] Lin I I, Chen C H, Pun I F, et al. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis(2008)[J]. Geophys Res Lett, 2009a, 36(3): 151-157.
    [16] 刘欣, 韦骏. 热带气旋与海洋暖涡间的海-气相互作用[J]. 北京大学学报: 自然科学版, 2014, 50(3): 456-466.LIU Xing, WEI Jun. Air-Sea Interaction between Tropical Cyclone and Ocean Warm Core Ring[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 456-466. (in Chinese)
    [17] 韩林生, 高佳, 郭俊如, 等. 上层海洋对热带气旋的响应与反馈研究进展[J]. 海洋通报, 2012, 31(2): 233-239.HAN Linsheng, GAO Jia, GUO Junru, et al. Research progress of the response and feedback of the upper ocean to Tropical Cyclones[J]. Marine Science Bulletin, 2012, 31(2): 233-239. (in Chinese)
    [18] 陈大可, 雷小途, 王伟, 等. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.CHEN Dake, LEI Xiaotu, WANG Wei, et al. Upper ocean response and feedback mechanisms to Typhoon[J]. Progress in Geography, 2013, 28(10): 1077-1086. (in Chinese)
    [19] 李薛, 付东洋, 张莹, 等. 超强台风“威马逊”对南海西北海域海洋环境的影响[J]. 热带海洋学报, 2016, 35(6): 19-28. LI Xue, FU Dongyang, ZHANG Ying, et al. The impacts of super typhoon Rammasun on the environment of the northwestern South China Sea[J]. Journal of Tropical Oceanography, 2016, 35(6): 19-28. (in Chinese)
    [20] 刘广平, 胡建宇. 南海中尺度涡旋对热带气旋的响应: 个例研究[J]. 台湾海峡, 2009, 28(3): 308-315.LIU Guangping, HU Jianyu. Response of the mesoscale eddies to tropical cyclones in the South China Sea: a case study[J]. Taiwan Strait, 2009, 28(3): 308-315. (in Chinese)
    [21] 石建新, 蒋小平, 姜洪峰, 等. 海洋中暖涡对热带气旋强度的影响[J]. 海洋预报, 2010, 27(6): 1-4.SHI Jianxing, JIANG Xiaoping, JIANG Hongfeng, et al. The effect of ocean warm eddy on tropical cyclone intensity[J]. Marine Forecasts, 2010, 27(6): 1-4. (in Chinese)
    [22] Leipper D F, Volgenau L D, Navy U S. Hurricane Heat Potential of the Gulf of Mexico[J]. J Phys Oceanogr, 1972, 2(3): 218-224.
    [23] Lin I I, Wu C C, Pun I F, et al. Upper-ocean thermal structure and the Western North Pacific Category 5 typhoons. Part I: Ocean features and the Category 5 Typhoons' intensification[J]. Mon Wea Rev, 2008, 136(9): 3288-3306.
    [24] Lin I I, Pun I F, Wu C C. Upper-ocean thermal structure and the Western North Pacific Category 5 typhoons. Part II: Dependence on translation speed[J]. Mon Wea Rev, 2009b, 137(11): 3744-3757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700