用户名: 密码: 验证码:
低配筋UHPC中空短柱轴心受压力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical Performance of Low-reinforced UHPC Hollow Short Columns Under Axial Compression Load
  • 作者:杨俊 ; 周建庭 ; 丁鹏 ; 王宗山 ; 周璐 ; 徐略勤
  • 英文作者:YANG Jun;ZHOU Jian-ting;DING Peng;WANG Zong-shan;ZHOU Lu;XU Lue-qin;School of Civil Engineering, Chongqing Jiaotong University;State Key Laboratory Breeding Base of Mountain Bridge and Tunnel Engineering;T.Y.Lin International Engineering Consulting (China) Co., Ltd.;
  • 关键词:桥梁工程 ; 低配筋UHPC中空短柱 ; 轴心受压试验 ; 宽厚比 ; 箍筋间距
  • 英文关键词:bridge engineering;;low-reinforced UHPC hollow short column;;axial compression test;;width-to-thickness ratio;;stirrup spacing
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:重庆交通大学土木工程学院;山区桥梁与隧道工程国家重点实验室培育基地;林同棪国际工程咨询(中国)有限公司;
  • 出版日期:2019-03-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.187
  • 基金:国家重点研发计划项目(2017YFC0806007,2016YFC0802202);; 国家杰出青年科学基金项目(51425801);; 重庆市研究生科研创新项目(CYB16109);; 重庆市科技新星培育工程项目(KJXX2017018)
  • 语种:中文;
  • 页:ZGGL201903010
  • 页数:12
  • CN:03
  • ISSN:61-1313/U
  • 分类号:85-96
摘要
为研究低配筋UHPC中空短柱在轴心受压下的极限承载能力及其影响因素,以UHPC材料特性研究为基础,设计并制作18根不同壁厚、不同箍筋间距的低配筋UHPC中空短柱,开展轴心受压破坏试验研究及理论研究。采用控制变量法对比分析宽厚比、箍筋间距对低配筋UHPC中空短柱的极限荷载、破坏形态、轴向和横向变形的影响。研究结果表明:所有UHPC中空短柱在达到极限承载能力的70%之前,力学性能接近线弹性变化,侧向变形较小,在0.5 mm之内;随着变形的增大,试件出现微小裂缝并伴有钢纤维拔出声,细而密的裂缝显著增多,达到极限荷载时,试件均发出爆裂声;当设计宽厚比分别为5.67和3时,无箍筋UHPC空心短柱的极限承载力为理论计算值的70.88%和87.65%;随着箍筋间距加密,极限承载力有所提高,但加密至一定程度后,承载力不再增长,接近材料强度极限值;采用UHPC塑性损伤本构模型对构件进行数值模拟,分析结果与理论计算和试验结果符合较好,按照直接强度计算法得到的中空短柱极限荷载接近试验值,可供UHPC柱设计提供参考。
        To investigate the factors influencing ultimate load capacity on low-reinforced ultra-high performance concrete(UHPC) hollow short columns, an impact analysis of width-to-thickness ratio and stirrup spacing was carried out. Based on a UHPC material characteristics study, 18 UHPC low-reinforced hollow short columns with different wall thickness and stirrup spacing were designed and fabricated. Then, axial compression tests and theoretical research was carried out. The influence of width-thickness ratio and stirrup spacing on the ultimate load, failure pattern, axial and lateral deformation of low-reinforced UHPC hollow short columns is analyzed by using the control variable method. The results indicate that all columns had linear elasticity and small lateral deformation within 0.5 mm before 70% Pu. As the deformation increased, small and dense cracks increased significantly in the specimens, and the sound of steel fiber pulling out was heard. When the ultimate load was reached, the specimens cracked with a loud cracking sound. The ultimate load capacity of UHPC hollow short columns without steel stirrups was found to be 70.88% and 87.65% of the calculated value, respectively, with width-to-thickness ratios of 5.67 and 3, respectively. With decreased stirrup spacing, the ultimate load capacity was improved. However, as the test load approached the limit strength of the material, the measured load capacity no longer increased by decreasing stirrup spacing. The capacity analysis was also simulated using the UHPC damaged plastic model, and the results are in strong agreement with the theoretical and test results. The calculated values are also very close to the test results when using the direct strength method for ultimate load capability calculations, which provides additional support for UHPC column design.
引文
[1] RICHARD P, CHEYREZY M. Composition of Reactive Powder Concretes [J]. Cement and Concrete Research, 1995, 25 (7): 1501-1511.
    [2] MALIK A R, FOSTER S J. Behaviour of Reactive Powder Concrete Columns Without Steel Ties [J]. Journal of Advanced Concrete Technology, 2008, 6 (2): 377-386.
    [3] AL-OSTA M A, ISA M N, BALUCH M H, et al. Flexural Behavior of Reinforced Concrete Beams Strengthened with Ultra-high Performance Fiber Reinforced Concrete [J]. Construction and Building Materials, 2017, 134: 279-296.
    [4] SAFDAR M, MATSUMOTO T, KAKUMA K. Flexural Behavior of Reinforced Concrete Beams Repaired with Ultra-high Performance Fiber Reinforced Concrete (UHPFRC) [J]. Composite Structures, 2016, 157: 448- 460.
    [5] 杨俊,周建庭,程俊,等.基于断裂力学的UHPC复合拱圈加固效率研究[J].桥梁建设,2018,48(4):74-78. YANG Jun, ZHOU Jian-ting, CHENG Jun, et al. Study of Reinforcement Efficiency of UHPC Composite Arch Ring Based on Fracture Mechanics[J]. Bridge Construction, 2018, 48 (4): 74-78.
    [6] TSIOULOU O T, LAMPROPOULOS A P, DRITSOS S E. Experimental Investigation of Interface Behaviour of RC Beams Strengthened with Concrete Layers [J]. Construction and Building Materials, 2013, 40: 50-59.
    [7] YANG J, ZHOU J, WANG Z, et al. Structural Behavior of Ultrahigh-performance Fiber-reinforced Concrete Thin-walled Arch Subjected to Asymmetric Load[J]. Advances in Civil Engineering, 2019(2019): 1-12.
    [8] GRAYBEAL B A. Compressive Behavior of Ultra-High-performance Fiber-reinforced Concrete [J]. ACI Materials Journal, 2007, 104 (2): 146-152.
    [9] 张哲,邵旭东,李文光,等.超高性能混凝土轴拉性能试验[J].中国公路学报,2015,28(8):50-58. ZHANG Zhe, SHAO Xu-dong, LI Wen-guang, et al. Axial Tensile Behavior Test of Ultra High Performance Concrete [J]. China Journal of Highway and Transport, 2015, 28 (8): 50-58.
    [10] 唐昌辉,刘冬明.活性粉末混凝土柱轴心受压试验研究[J].中国科技论文,2016,11(1):7-11. TANG Chang-hui, LIU Dong-ming. Experimental Study on Reactive Powder Concrete Columns Under Uniaxial Compression [J].China Sciencepaper, 2016, 11 (1): 7-11.
    [11] 季文玉,罗华,杨国静.钢管活性粉末混凝土长柱轴压性能试验研究[J].中国铁道科学,2014,35(1):28-33. JI Wen-yu, LUO Hua, YANG Guo-jing. Experimental Research on Mechanical Behavior of Axially Loaded RPC Filled Circular Steel Tube Slender Column [J]. China Railway Science, 2014, 35 (1): 28-33.
    [12] 郝文秀,钟铁毅.活性粉末混凝土桥墩延性试验研究与数值分析[J].土木工程学报,2010,43(6):82-86. HAO Wen-xiu, ZHONG Tie-yi. Experimental Study and Numerical Analysis of the Ductility of Reactive Powder Concrete Piers [J]. China Civil Engineering Journal, 2010, 43 (6): 82-86.
    [13] 杨克家,孙林柱,李桅,等.RPC中空受压构件截面设计及受力性能研究[J].工程力学,2016,33(5):166-175. YANG Ke-jia, SUN Lin-zhu, LI Wei, et al. Cross Section Design of and Mechanical Performance Investigation into RPC Hollow Members [J]. Engineering Mechanics, 2016, 33 (5): 166-175.
    [14] 张霓,王连广,温建萍.GFRP管高强混凝土空心柱轴压试验研究[J].东北大学学报:自然科学版,2013,34(7):1049-1052. ZHANG Ni, WANG Lian-guang, WEN Jian-ping. Experiment Research on High Strength Concrete-filled Double Skin Hollow Composite Columns Under Axially Loading [J]. Journal of Northeastern University: Natural Science, 2016, 34 (7): 166-175.
    [15] 邓宗才,王义超.FRP约束超高性能混凝土圆柱轴压本构模型[J].西南交通大学学报,2015,50(4):641-647. DENG Zong-cai, WANG Yi-chao. Axial Compression Stress-strain Model for UHPC Cylinders Confined by FRP [J]. Journal of Southwest Jiaotong University, 2015, 50 (4): 641-647.
    [16] 唐昌辉,欧阳鹏.圆中空夹层钢管RPC轴心受压短柱的试验研究[J].铁道科学与工程学报,2016,13(12):2427-2433. TANG Chang-hui, OUYANG Peng. Mechanical Behavior or RPC Filled Double Skin Circular Steel Tube Columns [J]. Journal of Railway Science and Engineering, 2016, 13 (12): 2427-2433.
    [17] 陶忠,韩林海,黄宏.圆中空夹层钢管混凝土柱力学性能研究[J].土木工程学报,2004,37(10):41-51. TAO Zhong, HAN Lin-hai, HUANG Hong. Mechanical Behaviour of Concrete-filled Double Skin Steel Tubular Columns with Circular Sections [J]. China Civil Engineering Journal, 2004, 37 (10): 41-51.
    [18] 王宏伟,徐国林,钟善桐.空心率对空心钢管混凝土轴压短柱工作性能及承载力影响的研究[J].工程力学,2007,24(10):112-118. WANG Hong-wei, XU Guo-lin, ZHONG Shan-tong. Study on Influence of Hollow Ratio to Bearing Capacity of H-CFST [J]. Engineering Mechanics, 2007, 24 (10): 112-118.
    [19] 谢力,林博洋,袁方,等.方中空夹层钢管混凝土柱压-弯-剪受力性能试验研究[J].建筑结构学报,2015,36(增1):230-234. XIE Li, LIN Bo-yang, YUAN Fang, et al. Experimental Study on Mechanical Performance of Square Concrete Filled Double-skin Steel Tubular Columns Under Compression-bending-shear Loading Conditions [J]. Journal of Building Structures, 2015, 36 (S1): 230-234.
    [20] HAN L, YAO G. Behaviour of Concrete-filled Hollow Structural Steel (HSS) Columns with Pre-load on the Steel Tubes [J]. Journal of Constructional Steel Research, 2003, 59 (12): 1455-1475.
    [21] CHITAWADAGI M V, NARASIMHAN M C, KULKARNI S M. Axial Strength of Circular Concrete-filled Steel Tube Columns-DOE Approach [J]. Journal of Constructional Steel Research, 2010, 66 (10): 1248-1260.
    [22] 邵旭东,胡建华.钢-超高性能混凝土轻型组合桥梁结构[M].北京:人民交通出版社股份有限公司,2015. SHAO Xu-dong, HU Jian-hua. The Steel-UHPC Lightweight Composite Bridge Structures [M]. Beijing: China Communications Press Co., Ltd., 2015.
    [23] GRAYBEAL B. Material Property Characterization of Ultra-high Performance Concrete [R]. Washington DC: Federal Highway Administration, 2006.
    [24] GRAYBEAL B. Structural Behavior of Ultra-high Performance Concrete Prestressed I-girders[R]. Washington DC: Federal Highway Administration, 2006.
    [25] SRIRAM A, BRADLEY P. Design Guide for Precast UHPC Waffle Deck Panel System Including Connections [R]. Washington DC: Federal Highway Administration, 2013.
    [26] 何保康,周天华.矩形钢管截面b/t,h/t的限值确定[J].钢结构,2001(2):29-31. HE Bao-kang, ZHOU Tian-hua. Limitation for b/t, h/t Ratios of Steel Rectangular Hollow Sections [J]. Steel Construction, 2001 (2): 29-31.
    [27] 沈惠申.中厚板的弹性屈曲和后屈曲[J].应用数学和力学,1990,11(4):341-350. SHEN Hui-shen. Buckling and Postbuckling of Moderately Thick Plates [J]. Applied Mathematics and Mechanics, 1990, 11 (4): 341-350.
    [28] 刘涛,郭彦林.焊接箱形截面承载力的直接强度设计法[J] .工业建筑,2009,39(9):36-40. LIU Tao, GUO Yan-lin. Direct Strength Method of Welded Box-section for Predicting Ultimate Load-carrying Capacity [J]. Industrial Construction, 2009, 39 (9): 36-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700