以绕丹宁和噻唑烷-2,4-二酮为端基的不对称结构有机受体分子的设计合成与构性关系探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Designing an Organic Acceptor with Unsymmetrical Structure Based on Rhodanine and Thiazolidine-2,4-dione Units to Study the Structure–Property Relationship
  • 作者:杨阳 ; 蒋秀 ; 占肖卫 ; 陈兴国
  • 英文作者:YANG Yang;JIANG Xiu;ZHAN Xiaowei;CHEN Xingguo;Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials,College of Chemistry and Molecular Sciences,Wuhan University;Department of Materials Science and Engineering,College of Engineering,Peking University;
  • 关键词:不对称结构分子 ; 绕丹宁单元 ; 噻唑烷-2 ; 4-二酮单元 ; 有机受体分子 ; 有机太阳能电池
  • 英文关键词:Unsymmetric structure;;Rhodanine unit;;Thiazolidine-2,4-dione unit;;Small molecule acceptor;;Organic solar cells
  • 中文刊名:WLHX
  • 英文刊名:Acta Physico-Chimica Sinica
  • 机构:有机高分子光电功能材料湖北省重点实验室武汉大学化学与分子科学学院;北京大学工学院材料科学与工程系;
  • 出版日期:2019-03-15
  • 出版单位:物理化学学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金(51173138)资助项目~~
  • 语种:中文;
  • 页:WLHX201903007
  • 页数:11
  • CN:03
  • ISSN:11-1892/O6
  • 分类号:22-32
摘要
分别以绕丹宁和噻唑烷-2,4-二酮单元为端基、IDT为中心核设计合成了一个新型不对称结构的有机小分子受体IDT-2,并通过与两端均以绕丹宁或噻唑烷-2,4-二酮受体单元的对称小分子受体IDT-1和IDT-3进行对比,探讨了分子结构与性能之间的关系。研究发现,从IDT-1到IDT-3,随着两端的绕丹宁基团被噻唑烷-2,4-二酮基团逐步取代,这类小分子受体的吸收光谱显著蓝移,光学带隙E_g~(opt)逐步增大,LUMO和HOMO能级也逐渐抬升。随后我们分别以这三个小分子为受体、P3HT为给体共混构建活性层而制备了有机太阳能电池,结果表明,以两端均为绕丹宁单元的对称结构小分子受体IDT-1构建的电池器件具有最高的光电转换效率(PCE),相应的J_(sc)和FF值也最大,而V_(oc)则最低;而以两端均为噻唑烷-2,4-二酮基团的对称结构小分子受体IDT-3的电池器件,其V_(oc)最高,但其J_(sc)和FF则最低,PCE值也最小。对于IDT-2而言,由于分子只有一个绕丹宁单元被噻唑烷-2,4-二酮所取代,其V_(oc),J_(sc)和PCE均介于IDT-1与IDT-3之间。由此说明,尽管噻唑烷-2,4-二酮基团的引入能有效提升器件V_(oc),但却不利于改善其J_(sc)和FF,因此受体的分子设计中如何平衡电池器件的几种光伏性能参数而获得高的光电转换效率仍是十分重要的研究课题之一。
        As reported previously, rhodanine and thiazolidine-2,4-dione units have been widely used as the terminal group to construct the efficient non-fullerene small molecular acceptors with the structure of A_1-A_2-D-A_2-A_1. Compared with the acceptor using thiazolidine-2,4-dione unit as the terminal group, the acceptor with rhodanine unit as the terminal electron-withdrawing group usually showed the improved short circuit current density(J_(sc)) and fill factor(FF) as well as the higher power conversion efficiency(PCE), regardless of the loweropen circuit voltage(V_(oc)). However, the causes of difference are still not very clear. Therefore, in this work, an unsymmetrical organic acceptor(IDT-2) has been designed and synthesized withrhodanine and thiazolidine-2,4-dione units as the electron-withdrawing terminal groups to connect an indacenodithiophene(IDT) central core, respectively. By comparing with the two analogues of the symmetrical organic acceptors based on rhodamine unit(IDT-1) or thiazolidine-2,4-dione unit(IDT-3) as the terminal group, the structure-property relationship has been investigated for this series of acceptors. It is found that as two rhodamine terminal groups are replaced step by step with the thiazolidine-2,4-dione unit from IDT-1 to IDT-3, the ICT absorption of these small molecular acceptors is significantly blue-shifted from 633(soln)/656(film), 618/645 to 603/625 nm, and the corresponding optical band gap(E_g~(opt))is also gradually widened from 1.68, 1.71 to 1.77 eV for IDT-1, IDT-2 and IDT-3, respectively, which can be attributed to the introduction of thiazolidine-2,4-dione unitto reduce the stability of quinoid structure of theconjugation backbone. At the same time, the LUMO/HOMO(the lowest unoccupied molecular orbital/the highest occupied molecular orbital) energy levels of the molecules are gradually uplifted to be-3.62/-5.58,-3.60/-5.56, and-3.57/-5.53 eV, respectively, which is generally beneficial for the improvement of the Vocdue to the upshifted LUMO energy levels of the acceptors. Considering the complementary absorption and well-matched energy levels of the donor and acceptor, the regioregular poly(3-hexylthiophene)(P3 HT) has been chosen asa donor tofabricate the devices with three small molecular acceptors, respectively, and the correspondingphotovoltaic performances have been evaluated and compared. The device based on IDT-1 with two rhodamine terminal groups gives the best PCE of 4.52% with the lowest Voc of 0.87 V, thehighest FF of 70.66% and Jsc of 7.37 mA·cm~(-2), while the device based on IDT-3 with two thiazolidine-2,4-dione terminal groupsshows the poorest PCE of 3.40% with the highest Voc of 0.98 V but the lowest FF of 59.70% and Jsc of 5.82 mA·cm~(-2). As for IDT-2 with an unsymmetrical structure, it contains a thiazolidine-2,4-dione terminal group and a rhodamine terminal group at the two sides of the molecule. It can be seen that the IDT-2 baseddevicejust showsa PCE of 4.07% with aV oc of 0.91 V, a FF of 64.65% and a Jsc of 6.81 mA·cm~(-2), all of which are between those of the devices based on IDT-1 and IDT-3. These results indicate that the thiazolidine-2,4-dione unit is an effective terminal group to enhance the Vocof the device but is not beneficial to the improvement of the Jscand FF. Furthermore, when designing the structure of the acceptors, it is very important to maintain the balance of all the three parameters to maximize the PCE in the OSCs.
引文
(1)Li,Y.Acc.Chem.Res.2012,45,723.doi:10.1021/ar2002446
    (2)Lin,Y.;Li,Y.;Zhan,X.Chem.Soc.Rev.2012,41,4245.doi:10.1039/c2cs15313k
    (3)He,Z.;Wu,H.;Cao,Y.Adv.Mater.2013,26,1006.doi:10.1002/adma.201303391
    (4)Fu,Y.;Wang,F.;Zhang,Y.;Fang,X.;Lai,W.Y.;Huang,W.Acta Chim.Sin.2014,72,158.[付钰,王芳,张燕,方旭,赖文勇,黄维.化学学报,2014,72,158.]doi:10.6023/A13111142
    (5)Li,G.;Zhu,R.;Yang,Y.Nat.Photon.2012,6,153.doi:10.1038/nphoton.2012.11
    (6)Lin,Y.;Wang,J.;Zhang,Z.G.;Bai,H.;Li,Y.;Zhu,D.;Zhan,X.Adv.Mater.2015,27,1170.doi:10.1002/adma.201404317
    (7)Yan,C.;Barlow,S.;Wang,Z.;Yan,H.;Jen,A.K.Y.;Marder,S.R.;Zhan,X.Nat.Rev.Mater.2018,3,18003.doi:10.1038/natrevmats.2018.3
    (8)Dai,S.;Zhan,X.Acta Polym.Sin.2017,11,1706.[代水星,占肖卫.高分子学报,2017,11,1706.]doi:10.11777/j.issn1000-3304.2017.17214
    (9)Wang,W.;Yan,C.;Lau,T.K.;Wang,J.;Liu,K.;Fan,Y.;Lu,X.;Zhan,X.Adv.Mater.2017,29,1701308.doi:10.1002/adma.201701308
    (10)Zhu,J.;Ke,Z.;Zhang,Q.;Wang,J.;Dai,S.;Wu,Y.;Xu,Y.;Lin,Y.;Ma,W.;You,W.;et al.Adv.Mater.2018,30,1704713.doi:10.1002/adma.201704713
    (11)Wang,J.;Wang,W.;Wang,X.;Wu,Y.;Zhang,Q.;Yan,C.;Ma,W.;You,W.;Zhan,X.Adv.Mater.2017,29,1702125.doi:10.1002/adma.201702125
    (12)Zhao,W.;Li,S.;Yao,H.;Zhang,S.;Zhang,Y.;Yang,B.;Hou,J.J.Am.Chem.Soc.2017,139,7148.doi:10.1021/jacs.7b02677
    (13)Zhang,S.Q.;Hou,J.H.Acta Phys.-Chim.Sin.2017,33,2327.[张少青,侯剑辉.物理化学学报,2017,33,2327.]doi:10.3866/PKU.WHXB201706161
    (14)Po,R.;Bernardi,A.;Calabrese,A.;Carbonera,C.;Corso,G.;Pellegrino,A.Energy Environ.Sci.2014,7,925.doi:10.1039/c3ee43460e
    (15)Espinosa,N.;Hosel,M.;J?rgensen,M.;Krebs,F.C.Energy Environ.Sci.2014,7,855.doi:10.1039/c3ee43212b
    (16)Holliday,S.;Ashraf,R.S.;Wadsworth,A.;Baran,D.;Yousaf,S.A.;Nielsen,C.B.;Tan,C.H.;Dimitrov,S.D.;Shang,Z.;Gasparini,N.;et al.Nat.Commun.2016,7,11585.doi:10.1038/ncomms11585
    (17)Li,S.;Liu,W.;Shi,M.;Mai,J.;Lau,T.K.;Wan,J.;Lu,X.;Li,C.Z.;Chen,H.Energy Environ.Sci.2016,9,604.doi:10.1039/c5ee03481g
    (18)Qiu,N.;Yang,X.;Zhang,H.;Wan,X.;Li,C.;Liu,F.;Zhang,H.;Russell,T.P.;Chen,Y.Chem.Mater.2016,28,6770.doi:10.1021/acs.chemmater.6b03323
    (19)Wu,Y.;Bai,H.;Wang,Z.;Cheng,P.;Zhu,S.;Wang,Y.;Ma,W.;Zhan,X.Energy Environ.Sci.2015,8,3215.doi:10.1039/C5EE02477C
    (20)Baran,D.;Ashraf,R.S.;Hanifi,D.A.;Abdelsamie,M.;Gasparini,N.;R?hr,J.A.;Holliday,S.;Wadsworth,A.;Lockett,S.;Neophytou,M.;et al.Nat.Mater.2017,16,363.doi:10.1038/NMAT4797
    (21)Xiao,B.;Tang,A.;Zhang,J.;Mahmood,A.;Wei,Z.;Zhou,E.Adv.Energy Mater.2017,7,1602269.doi:10.1002/aenm.201602269
    (22)Cheng,Y.J.;Luo,J.D.;Huang,S.;Zhou,X.H.;Shi,Z.W.;Kim,T.D.;Bale,D.H.;Takahashi,S.;Yick,A.;Polishak,B.M.;et al.Chem.Mater.2008,20,5047.doi:10.1021/cm801097k
    (23)Cui,C.;Wong,W.Y.;Li,Y.Energy Environ.Sci.2014,7,2276.doi:10.1039/c4ee00446a
    (24)Xiao,B.;Tang,A.;Yang,J.;Wei,Z.;Zhou,E.ACS Macro Lett.2017,6,410.doi:10.1021/acsmacrolett.7b00097
    (25)Xiao,B.;Tang,A.;Cheng,L.;Zhang,J.;Wei,Z.;Zeng,Q.;Zhou,E.Sol.RRL2017,1,1700166.doi:10.1002/solr.201700166
    (26)Huo,L.;Liu,T.;Sun,X.;Cai,Y.;Heeger,A.J.;Sun,Y.Adv.Mater.2015,27,2938,doi:10.1002/adma.201500647
    (27)Yao,H.;Ye,L.;Hou,J.;Jang,B.;Han,G.;Cui,Y.;Su,G.M.;Wang,C.;Gao,B.;Yu,R.;et al.Adv.Mater.2017,29,1700254.doi:10.1002/adma.201700254
    (28)(a)Lu,L.;Zheng,T.;Wu,Q.;Schneider,A.M.;Zhao,D.;Yu,L.Chem.Rev.2015,115,12666.doi:10.1021/acs.chemrev.5b00098(b)Zhou,P.;Zhang,Z.G.;Li,Y.;Chen,X.;Qin,J.Chem.Mater.2014,26,3495.doi:10.1021/cm501052a
    (29)Blom,P.W.M.;Mihailetchi,V.D.;Koster,L.J.A.;Markov,D.E.Adv.Mater.2007,19,1551.doi:10.1002/adma.200601093
    (30)Cheng,P.;Zhao,X.;Zhou,W.;Hou,J.;Li,Y.;Zhan,X.Org.Electron.2014,15,2270.doi:10.1016/j.orgel.2014.06.025
    (31)Han,J.;Liang,Q.J.;Qu,Y.;Liu,J.G.;Han,Y.C.Acta Phys.-Chim.Sin.2018,34,391.[韩杰,梁秋菊,曲轶,刘剑刚,韩艳春.物理化学学报,2018,34,391.]doi:10.3866/PKU.WHXB201709131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700