用户名: 密码: 验证码:
地层因素对D-D次生γ源空间分布的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the influence of formation factors on spatial distribution of D-D induced γ-ray source
  • 作者:张丽 ; 于华 ; 贾文宝 ; 王印慧
  • 英文作者:ZHANG Li;YU Huawei;JIA Wenbao;WANG Yinhui;Department of Resources and Civil Engineering, Shandong University of Science and Technology;College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics;School of Geosciences, China University of Petroleum;
  • 关键词:D-D中子源 ; 密度测量 ; 次生γ源 ; 空间分布
  • 英文关键词:D-D Source;;Density measurement;;Induced γ-ray source;;Spatial distribution
  • 中文刊名:HJSU
  • 英文刊名:Nuclear Techniques
  • 机构:山东科技大学资源与土木工程系;南京航空航天大学材料科学与技术学院;中国石油大学(华东)地球科学与技术学院;
  • 出版日期:2019-01-10
  • 出版单位:核技术
  • 年:2019
  • 期:v.42
  • 基金:国家自然科学基金(No.41704113,No.41674129);; 山东省高校科研计划项目(No.J18KA190);; 泰安市科技计划项目(No.2017GX0013);; 山东科技大学人才引进科研启动基金项目(No.2014RCJJ040)资助~~
  • 语种:中文;
  • 页:HJSU201901008
  • 页数:6
  • CN:01
  • ISSN:31-1342/TL
  • 分类号:47-52
摘要
在D-D可控源密度测量中,为研究不同地层条件对次生γ源空间分布的影响,首先分析D-D可控源密度测量原理,在此基础上,采用蒙特卡罗方法模拟研究不同含氢指数、岩性和矿化度地层条件下的次生γ源空间分布特征,最后对其影响因素进行归纳总结。结果表明:次生γ源的空间位置和强度易受各种地层因素的影响,其中地层含氢指数、岩性和矿化度对次生γ源的空间分布都有影响,但影响程度不同。其中地层含氢指数的影响最大,主要影响空间位置,特别是当含氢指数在0~0.1变化时,俘获γ的空间位置变化最大。并且随着地层含氢指数增高,地层含氢量增高,对快中子的减速能力增强,更多的γ射线向中子源靠近,同时γ射线强度也逐渐增强。相比较而言,岩性和矿化度对次生γ源的强度影响较大,空间位置影响相对较小,岩性不同,地层中主要元素的种类和含量不同,热中子俘获截面不同,俘获γ强度也不相同;矿化度高的地层,氯元素含量相对较高,更多的热中子被俘获,γ射线强度增强。本研究对于D-D次生γ源的影响校正提供了基础数据,也为建立精度较高的D-D可控源密度测量方法提供依据。
        [Background] The spatial distribution of D-D "induced γ-ray source" is significantly different from that of entity γ-ray source, and it is more susceptible to the influence of various formation factors. [Purpose] This study aims at the spatial distribution of D-D induced γ-ray sources under different conditions in density logging. [Methods]Firstly, based on the principle of D-D controllable source density measurement, calculation model of density logging using D-D source was built. Then the spatial distribution characteristics of γ-ray sources under different formation conditions such as various hydrogen index, lithology and salinity, were simulated by using MCNP. Finally, all these influencing factors and simulation results were analyzed and summarized. [Results] Among these factors, the hydrogen index has the greatest impact on the spatial position of induced γ-ray source, and particularly, when formation hydrogen index varies within the range of 0~0.1, the spatial positions of capture γ-rays will change significantly. Comparatively, formation lithology and salinity have greater impact on the intensity of induced γ-rays than on the spatial distribution of these γ-rays. For formations of different lithologies, the types and contents of main elements in the formations are different. [Conclusions] The spatial distribution of induced γ-ray source spatial position and intensity are susceptible to the influence of various formation factors. This research provides the basic data for correcting the effects on D-D induced γ-ray source.
引文
1 Ajayi O,Torres-Verdin C,Preeg W E.Petrophysical interpretation of LWD,neutron-induced gamma-ray spectroscopy measurements,an inversion-based approach[C].California:SPWLA 56th Annual Logging Symposium,July 18-22,2015.
    2潘保芝,张瑞,刘坤,等.脉冲中子源密度测井俘获伽马射线强度的数值模拟[J].石油物探,2014,53(6):642-648.DOI:10.3969/j.issn.1000-1441.2014.06.003.PAN Baozhi,ZHANG Rui,LIU Kun,et al.Numerical simulation of pulsed neutron source density logging's secondary captured gamma ray strength[J].Geophysical Prospecting for Petroleum,2014,53(6):642-648.DOI:10.3969/j.issn.1000-1441.2014.06.003.
    3 Aitken J D,Adolph R,Evans M,et al.Radiation sources in drilling tools:comprehensive risk analysis in the design,development and operation of LWD tools[C].Kuala Lumpur:SPE International Conference on Health,Safety and Environment in Oil and Gas Exploration and Production,March 20-22,2002.DOI:10.2118/73896-MS.
    4彭琥.2000-2008年放射性测井技术进展述评[J].测井技术,2009,33(1):1-8.PENG Hu.Review on progress of radioactive well logging technology in 2000-2008[J].Well Logging Technology,2009,33(1):1-8.
    5 Rodriguez R,Weller G,Evans M.A new approach for identifying gas response using multiple LWD density measurements[C].SPWLA 50th Annual Logging Symposium,June 21-24,2009.
    6张锋,袁超.利用D-D中子发生器进行补偿中子孔隙度测井的模拟研究[J].测井技术,2010,34(3):227-232.ZHANG Feng,YUAN Chao.Monte Carlo simulation on compensated neutron porosity logging with D-D neutron porosity logging with D-D neutron generator[J].Well Logging with Technology,2010,34(3):227-232.
    7严岩,李炳营,郑世平,等.D-D中子源孔隙度测井的蒙特卡洛模拟[J].兰州大学学报(自然科学版),2012,48(03):123-127.YAN Yan,LI Bingying,ZHENG Shiping,et al.Monte Carlo simulation of D-D neutron source porosity logging[J].Journal of Lanzhou University(Natural Science),2012,48(03):123-127.
    8 Badruzzaman A,Bames S,Bair F,et al.Radioactive sources in petroleum industry:applications,concerns and alternatives[C].Asia Pacific Health,Safety,Security and Environment Conference,August 4-6,2009.DOI:10.2118/123593-ms.
    9 Bond L,Denslow K,Griffin J,et al.Evaluation of nonnuclear techniques for well logging technology evaluation[R].Washington:PNNL,2010.DOI:10.2172/1006309.
    10 Griffin J,Moran T,Bond L.Radiation source replacement workshop[R].Washington:Pacific Northwest National Laboratory(PNNL),2010.DOI:10.2172/1062523.
    11何雄英,徐大鹏,谢芹,等.D-D中子发生器n-γ密度测井的蒙特卡罗模拟研究[J].原子核物理评论,2013,30(02):151-155.DOI:10.11804/Nucl Phys Rev.30.02.151.HE Xiongying,XU Dapeng,XIE Qin,et al.Monte Carlo simulation of n-γdensity logging of DD neutron generator[J].Nuclear Physics Review,2013,30(02):151-155.DOI:10.11804/Nucl Phys Rev.30.02.151.
    12于华伟,张丽,侯博然.电子对效应对D-T次生γ密度测量的影响[J].核技术,2015,38(8):080502.DOI:10.11889/j.0253-3219.2015.hjs.38.080502.YU Huawei,ZHANG Li,HOU Boran.Effect of electron pair effect on D-T inducedγdensity measurement[J].Nuclear Techniques,2015,38(8):080502.DOI:10.11889/j.0253-3219.2015.hjs.38.080502.
    13 Yu H W,Zhang L.Study on the impact of pair production interaction on D-T controllable neutron density logging[J].Applied Radiation and Isotopes,2016,(111):104-109.DOI:10.1016/j.apradiso.2016.01.030.
    14张丽,于华伟,侯博然.D-D次生源计数对密度测量的影响[J].核技术,2016,36(3):030502.DOI:10.11889/j.0253-3219.2016.hjs.39.030502.ZHANG Li,YU Huawei,HOU Boran.Effect of density measurement on D-D induced gamma counting[J].Nuclear Techniques,2016,36(3):030502.DOI:10.11889/j.0253-3219.2016.hjs.39.030502.
    15于华伟,孙建孟,杨锦舟.氘-氘和氘-氚随钻中子孔隙度测井探测特性对比[J].中国石油大学学报(自然科学版),2009,33(06):41-45.YU Huawei,SUN Jianmeng,YANG Jinzhou.Comparison of detection characteristics of neutron porosity logging in D-D and D-T while drilling[J].Journal of China University of Petroleum(Natural Science Edition),2009,33(06):41-45.
    16 Han X G,Pemper R,Tutt T,et al.Environmental corrections and system calibration for a new pulsedneutron mineralogy instrument[C].Woodlands,Tex:SPWLA 50th Annual Logging Symposium,June 21-24,2009.
    17张锋.核地球物理基础[M].北京:石油工业出版社,2015:125-127.ZHANG Feng.Foundations of nuclear geophysics[M].Beijing:Petroleum Industry Press,2015:125-127.
    18 Zhang F,Zhang Q Y,Liu J T,et al.A method to describe inelastic gamma field distribution in neutron gamma density logging[J].Applied Radiation and Isotopes,2017,(129):189-195.DOI:10.1016/j.apradiso.2017.08.024.
    19 Gardner R P,Xu L.Status of the Monte Carlo library least-squares(MCLLS)approach for non-linear radiation analyzer problems[J].Radiation Physics Chemistry,2009,78(10):843-851.DOI:10.1016/j.radphyschem.2009.04.023.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700