用户名: 密码: 验证码:
深海小型爬行机器人研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Status of Benthic Small-scale Crawling Robots
  • 作者:张奇峰 ; 张运修 ; 张艾群
  • 英文作者:ZHANG Qifeng;ZHANG Yunxiu;ZHANG Aiqun;State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:深海小型爬行机器人 ; 海底自适应行走 ; 导航定位 ; 能源供给 ; 轻量级机械手
  • 英文关键词:benthic small-scale crawler robot;;seafloor adaptive walking;;navigation and positioning;;energy supply;;lightweight manipulator
  • 中文刊名:JQRR
  • 英文刊名:Robot
  • 机构:中国科学院沈阳自动化研究所机器人学国家重点实验室;中国科学院大学;
  • 出版日期:2018-08-28 17:21
  • 出版单位:机器人
  • 年:2019
  • 期:v.41
  • 基金:国家重点研发计划(2017YFC0306402)
  • 语种:中文;
  • 页:JQRR201902013
  • 页数:15
  • CN:02
  • ISSN:21-1137/TP
  • 分类号:116-130
摘要
通过充分的文献调研和总结,根据海上作业形式对典型的深海小型爬行机器人分成3类进行了综述.对影响深海小型爬行机器人发展的海底运动适应性、导航定位、能源供给以及轻量级机械手4项关键技术进行了总结和分析,并对其未来的发展趋势进行了展望.
        After sufficient literature survey and summary, the typical benthic small-scale robots are divided into three categories to be analyzed comprehensively according to their operation forms in the sea. 4 key technologies that affect the development of benthic small-scale crawling robots are summarized and analyzed, i.e., seafloor adaptive walking, navigation and positioning, energy supply and lightweight manipulator technologies. Finally, the development trends of benthic smallscale crawling robots are discussed.
引文
[1]Brown W S. Elements of physical oceanography[M]//Springer Handbook of Ocean Engineering. Cham, Switzerland:Springer,2016:15-46.
    [2]Ebbe B, Billett D S M, Brandt A, et al. Diversity of abyssal marine life[M]//Life in the World’s Oceans. Hoboken, USA:Blackwell Publishing Ltd, 2010:139-160.
    [3]NOAA. How much of the ocean have we explored[DB/OL].(2017-10-10)[2018-03-11]. http://oceanservice. noaa.gov/facts/exploration.html.
    [4]Rex M A, Etter R J. Deep-sea biodiversity:Pattern and scale[M]. Cambridge, USA:Harvard University Press, 2010.
    [5]Danovaro R, Snelgrove P V R, Tyler P. Challenging the paradigms of deep-sea ecology[J]. Trends in Ecology&Evolution, 2014, 29(8):465-475.
    [6]Watanabe M, Tashiro S, Momma H. Loss of the full ocean depth ROV Kaiko–Part 3:The cause of secondary cable fracture[C]//14th International Offshore and Polar Engineering Conference. Cupertino, USA:International Society Offshore&Polar Engineers, 2004:199-202.
    [7]Showstack R. Unmanned research vessel lost on deep sea dive[J]. Eos, Transactions American Geophysical Union, 2014,95(20):168.
    [8]Williams B. Lecture on DEEPSEA CHALLENGE:New science and technology at extreme depths[J]. Eos, Transactions American Geophysical Union, 2013, 94(4):44.
    [9]刘保华,丁忠军,史先鹏,等.载人潜水器在深海科学考察中的应用研究进展[J].海洋学报,2015,37(10):1-10.Liu B H, Ding Z J, Shi X P, et al. Progress of the application and research of manned submersibles used in deep sea scientific investigations[J]. Acta Oceanologica Sinica, 2015, 37(10):1-10.
    [10]陈俊,张奇峰,李俊,等.深渊着陆器技术研究及马里亚纳海沟科考应用[J].海洋技术学报,2017,36(1):63-69.Chen J, Zhang Q F, Li J, et al. Research on the application of the hadal lander technology in the Mariana Trench[J]. Journal of Ocean Technology, 2017, 36(1):63-69.
    [11]Inoue T, Shiosawa T, Takagi K. Dynamic analysis of motion of crawler-type remotely operated vehicles[J]. IEEE Journal of Oceanic Engineering, 2013, 38(2):375-382.
    [12]Helmholtz Center. Demo-mission deep sea[EB/OL].[2018-03-11]. http://www.robex-allianz.de/en/about-robex/demomissions/.
    [13]Yoshida H, Ishibashi S, Watanabe Y, et al. The ABISMO mud and water sampling ROV for surveys at 11,000 m depth[J].Marine Technology Society Journal, 2009, 43(5):87-96.
    [14]Barnes C R, Best M M R, Johnson F R, et al. Challenges,benefits and opportunities in operating cabled ocean observatories:Perspectives from NEPTUNE Canada[C]//2011 IEEE Symposium on Underwater Technology. Piscataway, USA:IEEE, 2011.
    [15]Sherman A D, Smith K L Jr. Deep-sea benthic boundary layer communities and food supply:A long-term monitoring strategy[J]. Deep-Sea Research, Part II:Topical Studies in Oceanography, 2009, 56(19):1754-1762.
    [16]Ocean Networks Canada. Free Wally keeps on ticking[DB/OL].(2011-09-21)[2018-03-12]. http://www.oceannetworks.ca/freewally-keeps-ticking.
    [17]Ocean Networks Canada. New eyes for Wally[DB/OL].(2012-10-02)[2018-03-12]. http://www.oceannetworks.ca/new-eyeswally.
    [18]Purser A, Thomsen L, Barnes C, et al. Temporal and spatial benthic data collection via an Internet operated deep sea crawler[J].Methods in Oceanography, 2013, 5:1-18.
    [19]Thomsen L, Purser A, Floegel S, et al. Temporal and spatial benthic data collection via mobile robots:Present and future applications[C]//OCEANS. Piscataway, USA:IEEE, 2015.
    [20]Brandt A, Gutt J, Hildebrandt M, et al. Cutting the umbilical:New technological perspectives in benthic deep-sea research[J].Journal of Marine Science and Engineering, 2016, 4(2):36.
    [21]ROBEX. Deep-sea crawler[DB/OL].[2018-03-11]. http://www.robex-allianz.de/en/deep-sea-crawler/.
    [22]ROBEX. iWally.[DB/OL].[2018-03-11]. http://www.robexallianz.de/en/deep-sea-crawler/iwally/.
    [23]Wedler A, Hellerer M, Rebele B, et al. ROBEX–Components and methods for the planetary exploration demonstration mission[C]//13th Symposium on Advanced Space Technologies in Robotics and Automation. 2015.
    [24]ROBEX. MANSIO-VIATOR[DB/OL].[2018-03-11]. http://www.robex-allianz.de/en/deep-sea-crawler/viator/.
    [25]Wenzhoefer F, Wulff T, Floegel S, et al. ROBEX–Innovative robotic technologies for ocean observations, a deep-sea demonstration mission[C]//OCEANS. Piscataway, USA:IEEE, 2016.
    [26]Wenzh?fer F, Knust R. Expedition programme PS108[R]. Bremerhaven, Germany:Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 2017.
    [27]Momma H, Watanabe M, Hashimoto K, et al. Loss of the full ocean depth ROV Kaiko–Part 1:ROV Kaiko–A review[C]//14th International Offshore and Polar Engineering Conference.Cupertino, USA:International Society Offshore&Polar Engineers, 2004:191-193.
    [28]Takai K, Inoue A, Horikoshi K. Thermaerobacter marianensis gen. nov., sp, nov., an aerobic extremely thermophilic marine bacterium from the 11000 m deep Mariana Trench[J]. International Journal of Systematic and Bacteriology, 1999, 49(2):619-628.
    [29]Ishibashi S, Yoshida H, Osawa H, et al. A ROV “ABISMO” for the inspection and sampling in the deepest ocean and its operation support system[C]//OCEANS. Piscataway, USA:IEEE,2008:405-410.
    [30]Sawa T, Aoki T, Osawa H, et al. Full depth ROV “ABISMO” and its transponder[C]//OCEANS. Piscataway, USA:IEEE, 2009:402-405.
    [31]Shiosawa T, Takagi K, Inoue T. Experimental and theoretical study on the motion of ROV with crawler system[C]//OCEANS.Piscataway, USA:IEEE, 2010.
    [32]Japan Agency for Marine-Earth Science and Technology.Trench biosphere expedition for the Challenger deep, Mariana Trench[R]. Yokosuka, Japan:Japan Agency for Marine-Earth Science and Technology, 2014.
    [33]Kand M S T, Sadeghian R, Masouleh M T. Design, analysis and construction of a novel flexible rover robot[C]//3rd RSI/ISM International Conference on Robotics and Mechatronics. Piscataway, USA:IEEE, 2015:377-382.
    [34]Huang Y W, Cao Q X, Leng C T. One improved generalized predictive motion controller based on slipping constrains for the six-wheeled rocker Mars rover[M]//Applied Mechanics and Materials, Vol.433-435. Zurich, Switzerland:Trans Tech Publications, 2013:111-116.
    [35]McGill P R, Sherman A D, Hobson B W, et al. Initial deployments of the Rover, an autonomous bottom-transecting instrument platform for long-term measurements in deep benthic environments[C]//OCEANS. Piscataway, USA:IEEE, 2007:1337-1343.
    [36]McGill P R, Sherman A D, Hobson B W, et al. Initial deployments of the rover, an autonomous bottom-transecting instrument platform[J]. Journal of Ocean Technology, 2009, 4(2):52-70.
    [37]Smith K L Jr, Sherman A D, Huffard C L, et al. Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific:Day to week resolution[J]. Limnology&Oceanography, 2014, 59(3):745-757.
    [38]Smith K L Jr, Ruhl H A, Kahru M, et al. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(49):19838-19841.
    [39]Henthorn R G, Hobson B W, McGill P R, et al. MARS benthic rover:In-situ rapid proto-testing on the Monterey accelerated research system[C]//OCEANS. Piscataway, USA:IEEE, 2010.
    [40]ROBEX. TRAMPER[DB/OL].[2018-03-11]. http://www.robex-allianz.de/en/deep-sea-crawler/tramper/.
    [41]Wenzhoefer F, Lemburg J, Hofbauer M, et al. TRAMPER–An autonomous crawler for long-term benthic oxygen flux studies in remote deep sea ecosystems[C]//OCEANS. Piscataway,USA:IEEE, 2016.
    [42]Inoue T, Takagi K, Shiosawa T. Flipper type crawler system for running on the irregular seafloor[C]//OCEANS. Piscataway,USA:IEEE, 2010.
    [43]Shiosawa T, Takagi K, Inoue T. Experimental and theoretical study on the motion of ROV with crawler system[C]//OCEANS.Piscataway, USA:IEEE, 2010.
    [44]Inoue T, Shiosawa T, Takagi K. Dynamic motion of crawlertype ROV[C]//2011 IEEE Symposium on Underwater Technology and 2011 Workshop on Scientific Use of Submarine Cables and Related Technologies. Piscataway, USA:IEEE, 2011.
    [45]Inoue T, Katsui T, Tahara J, et al. Experimental research on movability characteristic of crawler driven ROV[C]//OCEANS.Piscataway, USA:IEEE, 2008.
    [46]Inoue T, Katsui T, Murakami H, et al. Preliminary research on the thruster assisted crawler system for a deep sea ROV[C]//OCEANS. Piscataway, USA:IEEE, 2009.
    [47]Dudek G, Giguere P, Prahacs C, et al. AQUA:An amphibious autonomous robot[J]. Computer, 2007, 40(1):46-53.
    [48]Haynes G C, Pusey J, Knopf R, et al. Laboratory on legs:An architecture for adjustable morphology with legged robots[M]//Proceedings of SPIE, Vol. 8387. Bellingham, USA:SPIE, 2012:No. 83870W.
    [49]Boxerbaum A S, Werk P, Quinn R D, et al. Design of an autonomous amphibious robot for surf zone operation:Part I–Mechanical design for multi-mode mobility[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, USA:IEEE, 2005:1459-1464.
    [50]Dey B B, Manjanna S, Dudek G. Ninja legs:Amphibious one degree of freedom robotic legs[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,USA:IEEE, 2013:5622-5628.
    [51]Zhang S W, Zhou Y C, Xu M, et al. AmphiHex-I:Locomotory performance in amphibious environments with specially designed transformable flipper legs[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3):1720-1731.
    [52]唐元贵,张艾群,俞建成.轮桨腿一体两栖机器人爬行步态规划研究[J].机器人,2009,31(S1):10-15.Tang Y G, Zhang A Q, Yu J C. Research on gait planning of crawl for wheel-propeller-legged amphibious robot[J]. Robot,2009, 31(S1):10-15.
    [53]Ayers J. Underwater walking[J]. Arthropod Structure&Development, 2004, 33(3):347-360.
    [54]王立权,刘德峰,陈东良,等.两栖多足机器人水下步态分析[J].机器人,2008,30(4):333-339.Wang L Q, Liu D F, Chen D L, et al. Analysis on underwater gait of amphibious multi-legged robot[J]. Robot, 2008, 30(4):333-339.
    [55]Jun B H, Shim H, Kim B, et al. Preliminary design of the multilegged underwater walking robot CR200[C]//OCEANS. Piscataway, USA:IEEE, 2012.
    [56]Jun B H, Shim H, Kim B, et al. Development of seabed walking robot CR200[C]//OCEANS. Piscataway, USA:IEEE, 2013.
    [57]Yoo S Y, Jun B H, Shim H, et al. Design and analysis of carbon fiber reinforced plastic body frame for multi-legged subsea walking robot, Crabster[J]. Ocean Engineering, 2015, 102:78-86.
    [58]Shim H, Yoo S Y, Kang H, et al. Development of arm and leg for seabed walking robot CRABSTER200[J]. Ocean Engineering, 2016, 116:55-67.
    [59]Jeong W Y, Yoo S Y, Shim H W, et al. Waypoint tracking control of a multi-legged underwater robot crabster[C]//OCEANS.Piscataway, USA:IEEE, 2015.
    [60]燕奎臣,吴利红.AUV水下对接关键技术研究[J].机器人,2007,29(3):267-273.Yan K C, Wu L H. A survey on the key technologies for underwater AUV docking[J]. Robot, 2007, 29(3):267-273.
    [61]Park J Y, Jun B H, Lee P M, et al. Experiments on vision guided docking of an autonomous underwater vehicle using one camera[J]. Ocean Engineering, 2009, 36(1):48-61.
    [62]Li D J, Chen Y H, Shi J G, et al. Autonomous underwater vehicle docking system for cabled ocean observatory network[J].Ocean Engineering, 2015, 109:127-134.
    [63]彭佳悦,祖晨曦,李泓.锂电池基础科学问题(I)——化学储能电池理论能量密度的估算[J].储能科学与技术,2013,2(1):55-62.Peng J Y, Zu C X, Li H. Fundamental scientific aspects of lithium batteries(I)–Thermodynamic calculations of theoretical energy densities of chemical energy storage systems[J]. Energy Storage Science and Technology, 2013, 2(1):55-62.
    [64]李泓,许晓雄.固态锂电池研发愿景和策略[J].储能科学与技术,2016,5(5):607-614.Li H, Xu X X. R&D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5):607-614.
    [65]袁宗轩,李智刚,孙凯,等.7000米微型ROV耐压控制系统研究与试验[J].微计算机信息,2010,26(10):29-31.Yuan Z X, Li Z G, Sun K, et al. Research and experiment on pressure tolerant control system of 7000-meter-micro-ROV[J].Microcomputer Information, 2010, 26(10):29-31.
    [66]中国科学院青岛生物能源与过程研究所.青岛能源所全海深固态锂电池完成万米海试示范应用[DB/OL].(2017-03-28)[2018-03-12]. http://www.qibebt.cas.cn/xwzx/kyjz/201703/t20170328 4765066. html.Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences. The full sea demonstration and application of the solid lithium battery developed by Qingdao Institute of Bioenergy and Bioprocess Technology are completed in the 10000m sea trial[DB/OL].(2017-03-28)[2018-03-12].http://www.qibebt.cas.cn/xwzx/kyjz/201703/t2017032847650 66.html.
    [67]Allen B, Austin T, Forrester N, et al. Autonomous docking demonstrations with enhanced REMUS technology[C]//OCEANS. Piscataway, USA:IEEE, 2006.
    [68]McEwen R S, Hobson B W, McBride L, et al. Docking control system for a 54-cm-diameter(21-in)AUV[J]. IEEE Journal of Oceanic Engineering, 2009, 33(4):550-562.
    [69]富一博,于沨.无线电能传输技术的发展及其水下应用趋势浅析[J].大连大学学报,2014(6):30-33.Fu Y B, Yu F. Development and a simple analysis of wireless power transfer using underwater[J]. Journal of Dalian University, 2014(6):30-33.
    [70]王海洋,李德骏,周杰,等.水下非接触电能传输耦合器优化设计[J].中国科技论文,2012(8):622-626.Wang H Y, Li D J, Zhou J, et al. Optimization of underwater contactless power transmission couplers[J]. China Sciencepaper, 2012(8):622-626.
    [71]唐凡,张克涵,严卫生,等.水下自主航行器非接触式充电系统频率控制[J].舰船科学技术,2013,35(2):43-46.Tang F, Zhang K H, Yan W S, et al. Research on frequency control of contactless charging system of AUV[J]. Ship Science and Technology, 2013, 35(2):43-46.
    [72]牛王强.水下无线电能传输研究进展[J].南京信息工程大学学报(自然科学版),2017,9(1):46-53.Niu W Q. The state of the art of underwater wireless power transfer[J]. Journal of Nanjing University of Information Science&Technology(Natural Science Edition), 2017, 9(1):46-53.
    [73]Yoshida H, Aoki T, Osawa H, et al. A deepest depth ROV for sediment sampling and its sea trial result[C]//5th International Symposium on Underwater Technology/5th Workshop on Scientific Use of Submarine Cables and Related Technologies.Piscataway, USA:IEEE, 2007.
    [74]Marani G, Choi S K, Yuh J. Underwater autonomous manipulation for intervention missions AUVs[J]. Ocean Engineering,2009, 36(1):15-23.
    [75]Limparis N M, Akin D L. Design of a distributed control architecture for the SAMURAI deep submergence manipulator[C]//IEEE/OES Autonomous Underwater Vehicles Conference. Piscataway, USA:IEEE, 2012.
    [76]ECA Group. Subsea electrical manipulator arms[DB/OL].[2018-03-14]. https://www.ecagroup.com/en/solutions/subseaelectrical-manipulator-arms.
    [77]Fan Y L, Zhang Q F, Zhang Y X, et al. Design and experiments of a deep-sea five-function electric manipulator system[C]//OCEANS. Piscataway, USA:IEEE, 2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700