用户名: 密码: 验证码:
一株五溴联苯醚(BDE-99)降解菌的分离、鉴定及降解特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isolation,identification and degradation characteristics of decabromo diphenyl ethers(BDE-99)-degrading strain
  • 作者:张可 ; 关允 ; 罗鸿兵 ; 陈伟 ; 陈佳 ; 格桑
  • 英文作者:ZHANG Ke;GUAN Yun;LUO Hongbing;CHEN Wei;CHEN Jia;GE Sang;College of Civil Engineering,Sichuan Agricultural University;School of Municipal and Environmental Engineering,Harbin Institute of Technology;
  • 关键词:五溴联苯醚(BDE-99) ; 降解菌 ; 分离鉴定 ; 降解特性
  • 英文关键词:pentabromodipheyle ether(BDE-99);;degradation bacteria;;isolation and identification;;degradation characteristics
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:四川农业大学土木工程学院;哈尔滨工业大学市政环境工程学院;
  • 出版日期:2017-05-11 20:39
  • 出版单位:环境工程学报
  • 年:2017
  • 期:v.11
  • 基金:国家自然科学基金资助项目(51278318);; 四川省科技支撑计划(2014NZ0044,2013SZ0103)
  • 语种:中文;
  • 页:HJJZ201705097
  • 页数:8
  • CN:05
  • ISSN:11-5591/X
  • 分类号:661-668
摘要
采用梯度压力驯化法从高海拔地区土壤样品中分离到1株能以BDE-99作为碳源生长的细菌菌株,命名为BHS-4,通过生理生化及对16S r DNA扩增,T/A克隆后测序鉴定,并进一步分析初始pH、温度、碳源、细胞表胞疏水性(MATH法)及共存重金属离子对菌株降解效果的影响。结果表明:菌株BHS-4与产碱杆菌属Alcaligenes cupidus同源性为99%。菌株降解BDE-99最适pH和温度分别为8.0、20℃,经11 d培养后,对浓度0.4 mg·L~(-1)的BDE-99,降解率达86.1%,在15~20℃范围具有较高降解率。降解特性研究结果显示,乳糖、麦芽糖和葡萄糖的添加促进了BHS-4对BDE-99的降解,而淀粉和乙酸钠添加对降解率产生了显著抑制作用(P<0.05)。NH_4NO_3的添加,使细胞表面疏水率(CSH)增加了49.5%,CSH与降解率呈极显著正相关(r=0.99,P<0.01)。Cu~(2+)、Zn~(2+)在0.1~0.3 mg·L~(-1)浓度下促进BDE-99降解;Cr~(6+)在0.1~0.6 mg·L~(-1)范围内对降解作用影响表现为先抑制、再促进、最后抑制。菌株BHS-4能在较低温度下对BDE-99进行高效降解且对Cu~(2+)、Zn~(2+)、Cr~(6+)具有一定的耐性,可应用于低温地区BDE-99的生物处理,同时可为进一步研究低温条件下BDE-99生物降解的代谢途径和机理提供一定的基础资料。
        A gram-negative bacterium capable of aerobically transforming BDE-99 was isolated from soil samples from a high altitude area by the gradient pressure acclimatization technique.The bacterial strain named BHS-4,was identified by physiological and biochemical characteristics and 16S rDNA sequence analysis.The factors affecting BDE-99 degradation,including initial pH of medium,culture temperature,carbon sources,cell surface hydrophobicity(MATH),and heavy metals,were then examined.The results showed that BHS-4 showed 99%homology with Alcaligenes cupidus based on 16S rDNA sequence analysis.The optimal growth pH and temperature for BHS-4 were 8.0 and 20 ℃,respectively.BHS-4 could degrade BDE-99 effectively from 15 to 20 ℃.Under optimal conditions,BHS-4 could effectively degrade 86.1% of BDE-99(0.4 mg·L~(-1)) after 11 days incubation.Lactose,maltose,and glucose increased the degradation rate whereas amylum and sodium acetate significantly inhibited degradation(P<0.05).CSH increased to 49.5% upon addition of NH_4NO_3.CSH and degradation rate were positively correlated(r=0.99,P<0.01).The presence of Cu~(2+) and Zn~(2+) at low concentrations from 0.1 mg·L~(-1)to 0.3 mg·L~(-1)improved the degradation of BDE-99.BDE-99 degradation rate showed an orderly trend of decrease,increase,and decrease under the experimental Cr~(6+) concentration of 0.1 to0.6 mg·L~(-1).BHS-4 could degrade BDE-99 at a relatively low temperature with high efficiency and toleratedCu~(2+),Zn~(2+),and Cr~(6+) to some extent.Hence,the strain BHS-4 can be applied in BDE-99 biodegradation treatment systems in cold conditions.It also provides a scientific basis to further understand the metabolic pathways and mechanism of BDE-99 biodegradation.
引文
[1]曾光明,刘敏茹,陈耀宁,等.土壤中多溴联苯醚研究进展[J].土壤学报,2014,51(5):934-943
    [2]刘汉霞,张庆华,江桂斌,等.多溴联苯醚及其环境问题[J].化学进展,2005,17(3):554-562
    [3]杨志浩,吴鹏,吴梅林,等.多溴联苯醚的微生物降解研究进展[J].生态科学,2014,33(6):1224-1230
    [4]邱孟德,邓代永,余乐洹,等.典型电器工业区河涌沉积物中的多溴联苯醚空间和垂直分布[J].环境科学,2012,33(2):580-586
    [5]王晓春,焦杏春,朱晓华,等.电子废弃物拆解地水体多溴联苯醚分布特征[J].生态环境学报,2014,23(6):1027-1033
    [6]张丽萍,周巧红,赵文玉,等.多溴联苯醚降解技术的研究进展[J].环境科学与技术,2014,37(10):144-148
    [7]张利飞,黄业茹,董亮.多溴联苯醚在中国的污染现状研究进展[J].环境化学,2010,29(5):787-795
    [8]赵宇,尹华,龙焰,等.一株十溴联苯醚高效好氧降解菌的筛选、鉴定及降解特性[J].微生物学通报,2013,40(6):988-998
    [9]陈桂兰,陈杏娟,郭俊,等.十溴联苯醚降解菌群的降解特性与组成分析[J].微生物学通报,2013,40(3):425-433
    [10]程吟文,谷成刚,王静婷,等.多溴联苯醚微生物降解过程与机理的研究进展[J].环境化学,2015,34(4):637-648
    [11]ROBROCK K R,COELHAN M,SEDLAK D L,et al.Aerobic biotransformation of polybrominated diphenyl ethers(PBDEs)by bacterial isolates[J].Environmental Science&Technology,2009,43(15):5705-5711
    [12]CHEN Chunyao,WANG Chunkang,SHIH Y H.Microbial degradation of 4-monobrominated diphenyl ether in an aerobic sludge and the DGGE analysis of diversity[J].Journal of Environmental Science and Health Part B:Pesticides,Food Contaminants,and Agricultural Wastes,2010,45(5):379-385
    [13]郭雅涛,吴后波,王广华,等.微生物降解多溴联苯醚研究进展[J].环境科学与技术,2012,35(3):132-138
    [14]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001:350-432
    [15]ZHAO Weisong,WANG Chen,XU Li,et al.Biodegradation of nicosulfuron by a novel Alcaligenes faecalis strain ZWS11[J].Journal of Environmental Sciences,2015,35:151-162
    [16]张超,陈文兵,武道吉.微生物絮凝剂在废水处理中的应用[J].化工技术与开发,2013,42(9):49-52
    [17]ZOU Yonghong,CHRISTENSE E R,ZHENG Wei,et al.Estimating stepwise debromination pathways of polybrominated diphenyl ethers with an analogue Markov Chain Monte Carlo algorithm[J].Chemosphere,2014,114:187-194
    [18]BRAKSTAD O G,LODENG A G G.Microbial diversity during biodegradation of crude oil in seawater from the north Sea[J].Microbial Ecology,2005,49(1):94-103
    [19]SHIH Y H,CHOU H L,PENG Y H.Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge[J].Journal of Hazardous Materials,2012,213-214:341-346
    [20]江虹,尹华,彭辉,等.BDE209好氧降解菌的筛选及降解特性研究[J].安全与环境学报,2010,10(2):49-53
    [21]岳黎,唐赟,宋嫣,等.不同碳、氮源对苯酚降解菌菌XH-10的生长和苯酚降解的影响[J].西华师范大学学报(自然科学版),2012,33(2):146-153
    [22]王鑫,王学江,卜云洁,等.外加氮源强化石油降解菌降解性能[J].同济大学学报(自然科学版),2014,42(6):924-929
    [23]黄栩,骆苑蓉,胡忠,等.持久性有机污染物(POPs)生物修复研究进展[J].环境科学学报,2006,26(3):353-361
    [24]HE Zhixing,XIAO Hailong,TANG Lu,et al.Biodegradation of di-n-butyl phthalate by a stable bacterial consortium,HD-1,enriched from activated sludge[J].Bioresource Technology,2013,128:526-532

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700