用户名: 密码: 验证码:
复合锶离子光交联海藻酸盐水凝胶支架的机械和生物学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of adding strontium ions into photocrosslinked alginate hydrogels on its mechanical and biological properties
  • 作者:赵德路 ; 铁朝荣 ; 王新 ; 朱怀安 ; 杨偲偲 ; 李晓保 ; 尹苗
  • 英文作者:Zhao Delu;Tie Chaorong;Wang Xin;Zhu Huaian;Yang Sisi;Li Xiaobao;Yin Miao;Center of Stomatology,Zhongnan Hospital of Wuhan University;Department of Stomatology,Affiliated Wuhan Children's Hospital of Tongji Medical College of Huazhong University of Science and Technology;
  • 关键词:海藻酸钠 ; ; 交联 ; 交联海藻酸盐水凝胶 ; 骨组织工程 ; 骨诱导 ; 水凝胶支架 ; 锶离子 ; 支架机械性能
  • 英文关键词:sodium alginate;;strontium;;photocrosslinked;;photocrosslinked alginate gels;;bone tissue engineering;;bone induction;;hydrogels;;strontium ions;;mechanical properties of scaffold
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:武汉大学中南医院口腔医学中心;华中科技大学同济医学院附属武汉儿童医院口腔科;
  • 出版日期:2019-04-03
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.875
  • 基金:国家自然科学基金青年科学基金项目(81500899),项目负责人:尹苗~~
  • 语种:中文;
  • 页:XDKF201918018
  • 页数:8
  • CN:18
  • ISSN:21-1581/R
  • 分类号:98-105
摘要
背景:光交联藻酸盐水凝胶以其良好的稳定性、可控性和生物相容性而备受关注,然而其作为骨组织工程支架仍存在不足之处,如强度不足、细胞黏附性能较差、缺乏骨诱导性等。目的:在光交联海藻酸盐水凝胶支架中复合锶离子,探究其机械和生物学性能变化。方法:在甲基丙烯酸酯化海藻酸盐形成光交联水凝胶后,分别浸泡于不同浓度(0,10,30,50,80,100 mmol/L)锶离子溶液中,制备携锶离子光交联海藻酸盐水凝胶,测量其溶胀率、弹性模量,并用扫描电镜和能谱仪分析材料表面形态和元素。将MC3T3-E1细胞分别接种于不同浓度携锶离子光交联海藻酸盐水凝胶表面,培养第4小时,Live/Dead染色观察细胞黏附情况;培养第3天,Live/Dead染色观察细胞伸展情况。结果与结论:①扫描电镜显示,随着引入锶离子浓度的升高,携锶离子光交联海藻酸盐水凝胶的致密程度增加,孔径减小;②能谱仪检测显示,随着引入锶离子浓度的增加,携锶离子光交联海藻酸盐水凝胶表面锶离子含量递增;③随着引入锶离子浓度的增加,携锶离子光交联海藻酸盐水凝胶溶胀率呈逐渐降低的趋势,弹性模量呈逐渐升高的趋势;④随着引入锶离子浓度的提高,MC3T3-E1细胞在携锶离子光交联海藻酸盐水凝胶表面的早期黏附率呈递增趋势,细胞伸展越来越好;⑤结果表明,在光交联海藻酸盐水凝胶中引入锶离子,可提高其机械性能,促进细胞的黏附伸展。
        BACKGROUND: Photocrosslinked alginate gels have been attracting great interest due to its good stability, controllability and biocompatibility.However, as bone tissue engineering scaffolds, it still has some deficiencies, such as insufficient strength, poor cell adhesion performance and lack of bone induction.OBJCTIVE: To explore the changes of mechanical and biological properties of photocrosslinked alginate gels doped strontium ions.METHODS: After methacrylated alginate to form photocrosslinked methacrylated alginate hydrogels, photocrosslinked alginate hydrogels chelated strontium ions strontium ion-co-photocrosslinked methacrylated alginate were prepared by soaking photocrosslinked methacrylated alginate in strontium ion solution of different concentrations(0, 10, 30, 50, 80 and 100 mmol/L). The swelling ratio and elastic modulus of the gels were measured, and the surface morphology and elements of the materials were analyzed by scanning electric microscope and energy dispersive spectroscopy, respectively. MC3 T3-E1 cells were seeded on the surface of photocrosslinked alginate gels that were incorporated with different concentrations of strontium ion for 4 hours, and then live/dead staining was used to observe the cell adhesion. The cell spreading on day 3 was determined by live/dead staining.RESULTS AND CONCLUSION:(1) Scanning electron microscope showed that the density of photocrosslinked alginate gels increased and the pore size decreased with the increase of strontium ion concentration.(2) Energy dispersive spectroscopy showed that the strontium content on the surface of the gels increased along with the augment of the strontium ion concentration.(3) With the increase of strontium ion concentration, the swelling ratio of the hydrogels gradually decreased while the elastic modulus of photocrosslinked alginate gels gradually increased.(4) As strontium ion concentration increased, the early adhesion rate of MC3 T3-E1 cells on the surface of photocrosslinked alginate gels was on a rise, and the cell extension gradually became better.(5) In summary, the addition of strontium ions into the photocrosslinked alginate gels can improve its mechanical properties and promote cell adhesion and extension.
引文
[1]Park H,Guo X,Temenoff JS,et al.Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro.Biomacromolecules.2009;10(3):541-546.
    [2]Finbloom JA,Francis MB.Supramolecular strategies for protein immobilization and modification.Curr Opin Chem Biol.2018;46:91-98.
    [3]Malafaya PB,Silva GA,Reis RL.Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications.Adv Drug Deliv Rev.2007;59(4-5):207-233.
    [4]Jeon O,Bouhadir KH,Mansour JM,et al.Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties.Biomaterials.2009;30(14):2724-2734.
    [5]Yin M,Xu F,Ding H,et al.Incorporation of magnesium ions into photo-crosslinked alginate hydrogel enhanced cell adhesion ability.J Tissue Eng Regen Med.2015;9(9):1088-1092.
    [6]Place ES,Rojo L,Gentleman E,et al.Strontium-and zinc-alginate hydrogels for bone tissue engineering.Tissue Eng Part A.2011;17(21-22):2713-2722.
    [7]Su Y,Cookerill I,Wang Y,et al.Zinc-Based Biomaterials for Regeneration and Therapy.Trends Biotechnol.2018.pii:S0167-7799(18)30305-6.doi:10.1016/j.tibtech.2018.10.009.[Epub ahead of print]Review.
    [8]Liu W,Li J,Cheng M,et al.Zinc-Modified Sulfonated Polyetheretherketone Surface with Immunomodulatory Function for Guiding Cell Fate and Bone Regeneration.Adv Sci(Weinh).2018;5(10):1800749.
    [9]Querido W,Rossi AL,Farina M.The effects of strontium on bone mineral:A review on current knowledge and microanalytical approaches.Micron.2016;80:122-134.
    [10]Steffi C,Shi Z,Kong CH,et al.Modulation of Osteoclast Interactions with Orthopaedic Biomaterials.J Funct Biomater.2018;9(1).pii:E18.doi:10.3390/jfb9010018.
    [11]Wang JL,Mukherjee S,Nisbet DR,et al.In vitro evaluation of biodegradable magnesium alloys containing micro-alloying additions of strontium,with and without zinc.J Mater Chem B.2015;3(45):8874-8883.
    [12]Haug A,Smisr?d O.Selectivity of some anionic polymers for divalent metal ions.Acta Chem Scand.1970;24:843.
    [13]Jiang QH,Gong X,Wang XX,et al.Osteogenesis of rat mesenchymal stem cells and osteoblastic cells on strontium-doped nanohydroxyapatite-coated titanium surfaces.Int J Oral Maxillofac Implants.2015;30(2):461-471.
    [14]Yuan N,Jia L,Geng Z,et al.The Incorporation of Strontium in a Sodium Alginate Coating on Titanium Surfaces for Improved Biological Properties.Biomed Res Int.2017;2017:9867819.
    [15]Ding Y,Wen C,Hodgson P,et al.Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys:a review.J Mater Chem B.2014;2(14):1912-1933.
    [16]Maria S,Swanson MH,Enderby LT,et al.Melatoninmicronutrients Osteopenia Treatment Study MOTS):a translational study assessing melatonin,strontium citrate),vitamin D3 and vitamin K2 MK7)on bone density,bone marker turnover and health related quality of life in postmenopausal osteopenic women following a one-year double-blind RCT and on osteoblast-osteoclast co-cultures.Aging(Albany NY).2017;9(1):256-285.
    [17]Singh SS,Roy A,Lee B,et al.Murine osteoblastic and osteoclastic differentiation on strontium releasing hydroxyapatite forming cements.Mater Sci Eng C Mater Biol Appl.2016;63:429-438.
    [18]Gu Z,Xie H,Li L,et al.Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering.J Mater Sci Mater Med.2013;24(5):1251-1260.
    [19]Cha C,Kim SR,Jin YS,et al.Tuning structural durability of yeast-encapsulating alginate gel beads with interpenetrating networks for sustained bioethanol production.Biotechnol Bioeng.2012;109(1):63-73.
    [20]M?rch YA,Donati I,Strand BL,et al.Effect of Ca2+,Ba2+,and Sr2+on alginate microbeads.Biomacromolecules.2006;7(5):1471.
    [21]Catanzano O,Soriente A,La Gatta A,et al.Macroporous alginate foams crosslinked with strontium for bone tissue engineering.Carbohydr Polym.2018;202:72-83.
    [22]Zhou Q,Kang H,Bielec M,et al.Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing.Carbohydr Polym.2018;197:292-304.
    [23]Jo JH,Lee EJ,Shin DS,et al.In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and polyepsilon-caprolactone)composite materials.J Biomed Mater Res B Appl Biomater.2009;91(1):213-220.
    [24]Cha CY,Kim SR,Jin YS,et al.Tuning structural durability of yeast-encapsulating alginate gel beads with interpenetrating networks for sustained bioethanol production.Biotechnol Bioeng.2012;109(1):63-73.
    [25]Alsberg E,Anderson KW,Albeiruti A,et al.Cell-interactive alginate hydrogels for bone tissue engineering.J Dent Res.2001;80(11):2025-2029.
    [26]Hsiong SX,Carampin P,Kong H,et al.Differentiation stage alters matrix control of stem cells.J Biomed Mater Res A.2008;85(1):145-156.
    [27]Chudinova EA,Surmeneva MA,Timin AS,et al.Adhesion,proliferation,and osteogenic differentiation of human mesenchymal stem cells on additively manufactured Ti6Al4Valloy scaffolds modified with calcium phosphate nanoparticles.Colloids Surf B Biointerfaces.2018;176:130-139.
    [28]Zreiqat H,Howlett CR,Zannettino A,et al.Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants.J Biomed Mater Res.2002;62(2):175-184.
    [29]Ajroud K,Sugimori T,Goldmann WH,et al.Binding Affinity of Metal Ions to the CD11b A-domain Is Regulated by Integrin Activation and Ligands.J Biol Chem.2004;279(24):25483-25488.
    [30]Kim G,Park JW,Kim IG,et al.Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s.Opt Express.2011;19(27):26936-26947.
    [31]Birgani ZT,Malhotra A,van Blitterswijk CA,et al.Human mesenchymal stromal cells response to biomimetic octacalcium phosphate containing strontium.J Biomed Mater Res A.2016;104(8):1946-1960.
    [32]Chen Y,Chen XY,Shen JW,et al.The Characterization and Osteogenic Activity of Nanostructured Strontium-Containing Oxide Layers on Titanium Surfaces.Int J Oral Maxillofac Implants.2016;31(4):e102-115.
    [33]Zhang X,Li H,Lin CC,et al.Synergetic topography and chemistry cues guiding osteogenic differentiation in bone marrow stromal cells through ERK1/2 and p38 MAPKsignaling pathway.Biomater Sci.2018;6(2):418-430.
    [34]Tan F,Xu X,Deng T,et al.Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold.Biomed Mater.2012;7(5):055009.
    [35]Genes NG,Rowley JA,Mooney DJ,et al.Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces.Arch Biochem Biophys.2004;422(2):161-167.
    [36]Qi W,Cai P,Yuan W,et al.Tunable swelling of polyelectrolyte multilayers in cell culture media for modulating NIH-3T3 cells adhesion.J Biomed Mater Res A.2014;102(11):4071-4077.
    [37]Weng L,Boda SK,Teusink MJ,et al.Binary Doping of Strontium and Copper Enhancing Osteogenesis and Angiogenesis of Bioactive Glass Nanofibers while Suppressing Osteoclast Activity.ACS Appl Mater Interfaces.2017;9(29):24484-24496.
    [38]Gao J,Wang M,Shi C,et al.Synthesis of trace element Si and Sr codoping hydroxyapatite with non-cytotoxicity and enhanced cell proliferation and differentiation.Biol Trace Elem Res.2016;174(1):208-217.
    [39]Park JW,Kang DG,Hanawa T.New bone formation induced by surface strontium-modified ceramic bone graft substitute.Oral Dis.2016;22(1):53-61.
    [40]Mao L,Xia L,Chang J,et al.The synergistic effects of Sr and Si bioactive ions on osteogenesis,osteoclastogenesis and angiogenesis for osteoporotic bone regeneration.Acta Biomaterialia.2017;61:217-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700