用户名: 密码: 验证码:
大涵道比风扇角区失速模化设计及非轴优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling Design of High Bypass Ratio Fan Corner Stall and Non-axisymmetric End-wall Optimization
  • 作者:杜越 ; 吴俣 ; 滕金芳 ; 余文胜 ; 羌晓青
  • 英文作者:DU Yue;WU Yu;TENG Jin-fang;YU Wen-sheng;QIANG Xiao-qing;School of Aeronautics and Astronautics,Shanghai Jiao Tong University;Research and Development Center,AECC Commercial Aircraft Engine Co.,Ltd;
  • 关键词:大涵道比风扇 ; 角区失速 ; 模化设计 ; 非轴对称端壁优化 ; 流场分析
  • 英文关键词:high bypass ratio fan;;corner stall;;modeling design;;non-axisymmetric end-wall optimization;;flow field analysis
  • 中文刊名:KXJS
  • 英文刊名:Science Technology and Engineering
  • 机构:上海交通大学航空航天学院;中国航发商用航空发动机有限责任公司设计研发中心;
  • 出版日期:2018-09-18
  • 出版单位:科学技术与工程
  • 年:2018
  • 期:v.18;No.459
  • 基金:上海市经信委产学研项目(沪CXY-2016-005)资助
  • 语种:中文;
  • 页:KXJS201826037
  • 页数:6
  • CN:26
  • ISSN:11-4688/T
  • 分类号:242-247
摘要
为研究非轴对称端壁造型对大涵道比风扇角区失速流动的改善作用,对某风扇进行了平面叶栅模化设计及非轴对称端壁优化。采用数值模拟方法,以风扇根部叶型为基础进行模化设计;在此基础上,采用两种不同的控制点分布方法对平面叶栅进行非轴对称端壁优化改型。研究结果表明:模化后的平面叶栅角区失速流动及叶片加载特点与风扇原型基本一致;采用自由曲面及类两面角曲面两种非轴造型对平面叶栅角区进行优化,叶栅总压损失系数分别降低了4.57%和5.38%;将流场改善效果较好的类两面角曲面造型应用于风扇原型角区,结果表明该造型使得风扇效率提高了0.441%,角区失速现象也得到了有效的抑制。深入的流场分析表明,类两面角曲面的非轴对称端壁造型,沿流向能有效推迟压气机平面叶栅通道涡向吸力面的发展,沿径向通过使涡结构上移减弱在端壁附近吸力面附面层和通道涡的相互作用;与此同时,对大涵道比风扇原型的角区失速流动也能起到较好控制效果。
        To study the effect of non-axisymmetric end-wall on the high bypass ratio fan corner stall,the fan was modeled into a cascade and optimization design of profiled end-wall was carried out. Modeling design was based on the fan root profile,and two distribution methods of control points were applied to optimize the non-axisymmetric end-wall of planar cascade. As a result,the corner stall flow and blade loading characteristics are basically the same with the fan. Two kinds of profiled end-walls reduce total pressure loss coefficient by 4. 57% and 5. 38% respectively. The profiled end-wall similar as blended blade and end wall shape is further applied to the hub of fan.Numerical computation results indicate that efficiency increase by 0. 441% and corner stall is controlled. From detailed flow field analysis,the profiled end-wall delays the development of channel vortex to suction surface and reduces the interaction between the channel vortex and suction side surface layer by adjusting vortex place. At the same time,effectiveness of controlling corner stall of high bypass ratio fan is also presented.
引文
1 Hergt A,Meyer R,Engel K.Experimental investigation of flow control in compressor cascades:ASME GT-2006-90415.Barcelona:ASME,2006
    2李晓东,钟兢军,高宇.高负荷压气机静叶根部叶型气动性能实验研究.推进技术,2017;38(3):581-587Li Xiaodong,Zhong Jingjun,Gao Yu.Experimental investigation on performance of a profile at cascade hub in a high load compressor stator.Journal of Propulsion Technology,2017;38(3):581-587
    3 Lei V M,Spakovszky Z S,Greitzer E M.A criterion for axial compressor hub-corner stall.Journal of Turbomachinery,2008;130(3):031006-1
    4 Rose M G.Non-axisymmetric end wall profiling in the HP NGV's of an axial flow gas turbine:ASME 94-GT-249.The Hague:ASME,1994
    5 Harvey D N W,Rose D M G,Taylor M D,et al.Non-axisymmetric turbine end wall design:Part I Three-dimensional linear design system:ASME 99-GT-337.Indianapolis:ASME,1999
    6 Hartland J C,Gregory-Smith D G,Harvey N W,et al.Non-axisymmetric turbine end wall design:Part II-Experimental validation.Journal of Turbomachinery,2000;122(2):286-293
    7 Harvey N W.Some effects of non-axisymmetric end wall profiling on axial flow compressor aerodynamics:Part I-Linear cascade investigation:ASME GT-2008-50990.Berlin:ASME,2008
    8 Harvey N W,Offord T P.Some effects of non-axisymmetric end wall profiling on axial flow compressor aerodynamics:Part II-Multi-stage HPC CFD study:ASME GT-2008-50991.Berlin:ASME,2008
    9 Dorfner C,Hergt A,Nicke E,et al.Advanced nonaxisymmetric endwall contouring for axial compressors by generating an aerodynamic separator-Part I:Principal cascade design and compressor application.Journal of Turbomachinery,2011;133(2):113-120
    10 Hergt A,Dorfner C,Steinert W,et al.Advanced non-axisymmetric end wall contouring for axial compressors by generating an aero-dynamic separator-part II:Experimental and numerical cascade investigation.Journal of Turbomachinery,2011;133(2):121-131
    11 Reutter O,Rozanski M,Hergt A,et al.Advanced endwall contouring for loss reduction and outflow homogenization for an optimized compressor cascade.International Journal of Turbomachinery,Propulsion and Power,2017;2(1):1
    12 Hoeger M,Schmidt-Eisenlohr U,Gomez S,et al.Numerical simulation of the influence of a fillet and a bulb on the secondary flow in a compressor cascade.Task Quarterly,2002;6(1):25-37
    13 Reutter O,Hemmert-Pottmann S,Hergt A,et al.Endwall contouring and fillet design for reducing losses and homogenizing the outflow of a compressor cascade:ASME GT-2014-25277.Düsseldorf:ASME,2014
    14 Ji L C,Shao W W,Yi W L,et al.A model for describing the influences of SUC-EW dihedral angle on corner separation:ASME GT-2007-27618.Montreal:ASME,2007
    15季路成,田勇,李伟伟,等.叶身/端壁融合技术研究.航空发动机,2012;38(6):5-11Ji Lucheng,Tian Yong,Li Weiwei,et al.Investigation on blended blade and endwall technique.Aeroengine,2012;38(6):5-11
    16 Li J,Ji L,Yi W.Experimental and numerical investigation on the aerodynamic performance of a compressor cascade using blended blade and end wall:ASME GT-2017-63879.Charlotte:ASME,2017

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700