用户名: 密码: 验证码:
特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rock Assemblage,Structural Characteristics and Genesis Mechanism of the Cuonadong Dome,Tethys Himalaya
  • 作者:张林奎 ; 张志 ; 李光明 ; 董随亮 ; 夏祥标 ; 梁维 ; 付健刚 ; 曹华文
  • 英文作者:Zhang Linkui;Zhang Zhi;Li Guangming;Dong Suiliang;Xia Xiangbiao;Liang Wei;Fu Jiangang;Cao Huawen;Chengdu Center of China Geological Survey;
  • 关键词:错那洞穹隆 ; 构造组合 ; 变质分带 ; 特提斯喜马拉雅 ; 锆石U-Pb定年 ; 地球化学 ; 构造地质学
  • 英文关键词:Cuonadong dome;;structure assemblage;;metamorphic zoning;;Tethys Himalayan;;zircon U-Pb dating;;geochemistry;;structural geology
  • 中文刊名:DQKX
  • 英文刊名:Earth Science
  • 机构:中国地质调查局成都地质调查中心;
  • 出版日期:2018-06-25 11:32
  • 出版单位:地球科学
  • 年:2018
  • 期:v.43
  • 基金:国家自然科学基金项目(No.41602214);; 中国地质调查局项目(No.DD20160015);; 国家重点研发计划项目(No.2016YFC060308)
  • 语种:中文;
  • 页:DQKX201808011
  • 页数:20
  • CN:08
  • ISSN:42-1874/P
  • 分类号:142-161
摘要
目前关于新近发现的错那洞穹隆的精细构造、岩石组成、变质变形运动学特征等方面均不清楚,严重阻碍了其演化历程的还原以及成穹与成矿耦合关系的解剖工作.在详实的野外地质调查基础上,补充采集了穹隆中新发现的岩浆岩进行年代学研究.结果表明,错那洞穹隆由上(边部)-中(幔部)-下(核部)3个构造层组成,分别以上、下拆离断层为分界线.核部岩石组合主要为片麻岩、淡色花岗岩以及少量深熔混合岩,可见大量伟晶岩脉穿插;幔部为古生界,岩石组合为一套强变质变形片岩夹碳酸盐岩,从内至外具有蓝晶石+十字石+石榴石+黑云母的蓝晶石带→十字石+石榴石+黑云母的十字石带→石榴石+堇青石+黑云母的石榴石带→绿泥石+黑云母的绿泥石带的巴罗式变质分带特征;边部主要为三叠纪-侏罗纪浅变质沉积岩系,岩石组合为一套砂板岩及少量千枚岩.穹隆内从早至晚经历了南北向逆冲推覆、南北向伸展、东西向伸展3期次的构造运动,穹隆的形成主要与南北向伸展作用有关.穹隆中岩浆活动从早至晚可见有早古生代片麻岩(约500 Ma)、中生代辉绿岩(140 Ma)、渐新世变形二云母花岗岩/伟晶岩(26 Ma)、中新世弱定向二云母花岗岩(18 Ma)、含石榴石电气石花岗岩(16.8~15.9 Ma)5期.综合研究表明,错那洞穹隆的形成是早期伸展拆离核杂岩叠加晚期岩浆底劈热穹隆综合作用的结果,成穹构造的初始阶段与始新世-渐新世藏南拆离系(STDS)的运动密切相关..
        The structure assemblage,rock composition,and kinematics characteristics of metamorphic deformation of the newly discovered Cuonadong dome are not clear currently,which seriously hinders the restoration of its evolutionary process and the anatomy of the coupled relationship between the formation of plutonium and mineralization.Based on the detailed field geological survey,the newly discovered magmatic rocks in dome were additionally collected for chronological study in this paper.The results show that the Cuonadong dome is divided into three structural layers of upper(margin)-middle(mantle)-lower(core)by upper and lower detachment faults.The core rock assemblages are primarily composed of granite gneiss,leucogranite,and a little migmatite,with a large amount of intruded pegmatite veins.The mantle rock assemblage is a set of strongly metamorphic and deformable schist with interlayer carbonate.This rock assemblage has Barrovian metamorphism confirmed by mineral assemblages from the core to the margin of kyanite+staurolite+garnet+biotite→taurolite+garnet+biotite→garnet+cordierite+biotite→chlorite+biotite;The margin is primarily comprised of slightly metamorphic Triassic-Jurassic sedimentary rocks,which is constituted of sericite chlorite sand slate and a small amount of phyllite.The dome from early to late has experienced N-S trending thrusting,N-S extension and E-W extension,and the formation of the dome is primarily associated with the N-S extension.There are five episodes of magmatism in the dome at~500 Ma(gneiss),140 Ma(diabase),26 Ma(deformed twomica granite/pegmatite),18 Ma(weakly oriented two-mica granite),16.8-15.9 Ma(garnet-tourmaline-bearing granite).The study shows that the formation of the Cuonadong dome is the result of the combined effect of the early extension and detachment and the late magmatic diapir,and the movement of the South Tibetan detachment system during the Eocene-Oligocene is the primal factor.
引文
Beaumont,C.,Jamieson,R.A.,Nguyen,M.H.,et al.,2001.Himalayan Tectonics Explained by Extrusion of a LowViscosity Crustal Channel Coupled to Focused Surface Denudation.Nature,414(6865):738-742.https://doi.org/10.1038/414738a
    Burg,J.P.,Guiraud,M.,Chen,G.M.,et al.,1984.Himalayan Metamorphism and Deformations in the North Himalayan Belt(Southern Tibet,China).Earth and Planetary Science Letters,69(2):391-400.https://doi.org/10.1016/0012-821x(84)90197-3
    Chardon,D.,Choukroune,P.,Jayananda,M.,1998.Sinking of the Dharwar Basin(South India):Implications for Archaean Tectonics.Precambrian Research,91(1-2):15-39.https://doi.org/10.1016/s0301-9268(98)00037-0
    Chen,Z.,Liu,Y.,Hodges,K.V.,et al.,1990.The Kangmar Dome:A Metamorphic Core Complex in Southern Xizang(Tibet).Science,250(4987):1552-1556.https://doi.org/10.1126/science.250.4987.1552
    Debon,F.,Fort,P.L.,Sheppard,S.M.F.,et al.,1986.The Four Plutonic Belts of the Transhimalaya-Himalaya:AChemical,Mineralogical,Isotopic,and Chronological Synthesis along a Tibet-Nepal Section.Journal of Petrology,27(1):219-250.https://doi.org/10.1093/petrology/27.1.219
    Duan,J.L.,Tang,J.X.,Lin,B.,2016.Zinc and Lead Isotope Signatures of the Zhaxikang Pb-Zn Deposit,South Tibet:Implications for the Source of the Ore-Forming Metals.Ore Geology Reviews,78:58-68.https://doi.org/10.1016/j.oregeorev.2016.03.019
    Fu,J.G.,Li,G.M.,Wang,G.H.,et al.,2016.First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome.International Journal of Earth Sciences,106(5):1581-1596.https://doi.org/10.1007/s00531-016-1368-2
    Gao,L.E.,Gao,J.H.,Zhao,L.H.,et al.,2017.The Miocene Leucogranite in the Nariyongcuo Gneiss Dome,Southern Tibet:Products from Melting Metapelite and Fractional Crystallization.Acta Petrologica Sinica,33(8):2395-2411(in Chinese with English abstract).
    Gao,L.E.,Zeng,L.S.,Hou,K.J.,et al.,2013a.Episodic Crustal Anatexis and the Formation of Paiku Composite Leucogranitic Pluton in the Malashan Gneiss Dome,Southern Tibet.Chinese Science Bulletin,58(27):2810-2822(in Chinese).
    Gao,L.E.,Zeng,L.S.,Wang,L.,et al.,2013b.Age and Formation Mechanism of the Malashan High-Ca Two-Mica Granite within the Northern Himalayan Gneiss Domes,Southern Tibet.Acta Petrologica Sinica,29(6):1995-2012(in Chinese with English abstract).
    Gao,L.E.,Zeng,L.S.,2014.Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome,Southern Tibet.Geochimica et Cosmochimica Acta,130:136-155.https://doi.org/10.1016/j.gca.2014.01.003
    Gao,L.E.,Zeng,L.S.,Xie,K.J.,2012.Eocene High Grade Metamorphism and Crustal Anatexis in the North Himalaya Gneiss Domes,Southern Tibet.Chinese Science Bulletin,57(6):639-650.https://doi.org/10.1007/s11434-011-4805-4
    Gao,S.,Liu,X.M.,Yuan,H.L.,et al.,2002.Determination of Forty-Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research,26(2):181-196.https://doi.org/10.1111/j.1751-908x.2002.tb00886.x
    Gu,P.Y.,He,S.P.,Li,R.S.,et al.,2013.Geochemical Features and Tectonic Significance of Granitic Gneiss of Laguigangri Metamorphic Core Complexes in Southern Tibet.Acta Petrologica Sinica,29(3):756-768(in Chinese with English abstract).
    Hou,Z.Q.,Qu,X.M.,Yang,Z.S.,et al.,2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ.Mineralization in Post-Collisional Extension Setting.Mineral Depsits,25(6):629-651(in Chinese with English abstract).
    Hu,G.Y.,Zeng,L.S.,Gao,L.E.,et al.,2011.Lanthanide Kinked Shape,Similar to Tetrad Effect,Observed in Sub-Volcanic Rocks from Qiaga,Southern Tibet,China.Geological Bulletin of China,30(1):82-94(in Chinese with English abstract).
    Lee,J.,Hacker,B.R.,Dinklage,W.S.,et al.,2000.Evolution of the Kangmar Dome,Southern Tibet:Structural,Petrologic,and Thermochronologic Constraints.Tectonics,19(5):872-895.https://doi.org/10.1029/1999tc001147
    Lee,J.,Hacker,B.,Wang,Y.,2004.Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome,Southern Tibet.Journal of Structural Geology,26(12):2297-2316.https://doi.org/10.1016/j.jsg.2004.02.013
    Lee,J.,McClelland,W.,Wang,Y.,et al.,2006.Oligocene-Miocene Middle Crustal Flow in Southern Tibet:Geochronology of Mabja Dome.Geological Society,London,Special Publications,268(1):445-469.https://doi.org/10.1144/gsl.sp.2006.268.01.21
    Lee,J.,Whitehouse,M.J.,2007.Onset of Mid-Crustal Extensional Flow in Southern Tibet:Evidence from U/Pb Zircon Ages.Geology,35(1):45-48.https://doi.org/10.1130/g22842a.1
    Leech,M.L.,2008.Does the Karakoram Fault Interrupt MidCrustal Channel Flow in the Western Himalaya?Earth and Planetary Science Letters,276(3):314-322.https://doi.org/10.1016/j.TIFl.2008.10.006
    Li,D.W.,Liu,D.M.,Liao,Q.N.,et al.,2003.Definition and Significance of the Lhagoi Kangri Metamorphic Core Complexes in Sa’gya,Southern Tibet.Regional Geology of China,22(5):303-307(in Chinese with English abstract).
    Li,G.M.,Zhang,L.K.,Jiao,Y.J.,et al.,2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt,Southern Tibet.Mineral Deposits,36(4):1003-1008(in Chinese with English abstract).
    Lin,B.,Tang,J.X.,Zheng,W.B.,et al.,2014.Petrochemical Features,Zircon U-Pb Dating and Hf Isotopic Composition of the Rhyolite in Zhaxikang Deposit,Southern Xizang(Tibet).Geological Review,60(1):178-189(in Chinese with English abstract).
    Lin,B.,Tang,J.X.,Zheng,W.B.,et al.,2016.Geochemical Characteristics,Age and Genesis of Cuonadong Leucogranite,Tibet.Acta Petrologica et Mineralogica,35(3):391-406(in Chinese with English abstract).
    Liu,Y.M.,Li,C.,Xie,C.M.,et al.,2016.Cambrian Granitic Gneiss within the Central Qiangtang Terrane,Tibetan Plateau:Implications for the Early Palaeozoic Tectonic Evolution of the Gondwanan Margin.International Geology Review,58(9):1043-1063.https://doi.org/10.1080/00206814.2016.1141329
    Liu,Z.,Zhou,Q.,Lai,Y.,et al.,2015.Petrogenesis of the Early Cretaceous Laguila Bimodal Intrusive Rocks from the Tethyan Himalaya:Implications for the Break-Up of Eastern Gondwana.Lithos,236-237:190-202.https://doi.org/10.13039/501100001809
    Liu,Z.C.,Wu,F.Y.,Ding,L.,et al.,2016.Highly Fractionated Late Eocene(~35 Ma)Leucogranite in the Xiaru Dome,Tethyan Himalaya,South Tibet.Lithos,240-243:337-354.https://doi.org/10.13039/501100001809
    Liu,Z.H.,Pan,B.W.,Li,P.C.,et al.,2017.Ductile Shear Zone in High-Grade Metamorphic Rocks and Its Rheomorphic Mechanism in the Daqing Mountain Area,Inner Mongolia.Earth Science,42(12):2105-2116(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.135
    Quigley,M.C.,Liang,J.Y.,Gregory,C.,et al.,2008.U-Pb SHRIMP Zircon Geochronology and T-t-d History of the Kampa Dome,Southern Tibet.Tectonophysics,446(1-4):97-113.https://doi.org/10.1016/j.tecto.2007.11.004
    Siddoway,C.S.,Richard,S.M.,Fanning,C.M.,et al.,2004.Origin and Emplacement of a Middle Cretaceous Gneiss Dome,Fosdick Mountains,West Antarctica.Geological Society of America Special Papers,380:267-294.https://doi.org/10.1130/0-8137-2380-9.267
    Smit,M.A.,Hacker,B.R.,Lee,J.,2014.Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya.Geology,42(7):591-594.https://doi.org/10.1130/g35524.1
    Sun,X.,Zheng,Y.Y.,Pirajno,F.,et al.,2017.Geology,S-Pb Isotopes,and 40 Ar/39 Ar Geochronology of the Zhaxikang SbPb-Zn-Ag Deposit in Southern Tibet:Implications for Multiple Mineralization Events at Zhaxikang.Mineralium Deposita,53(3):435-458.https://doi.org/10.1007/s00126-017-0752-6
    Tirel,C.,Brun,J.P.,Burov,E.,2004.Thermomechanical Modeling of Extensional Gneiss Domes.Geological Society of America Special Papers,380(1):67-78.https://doi.org/10.1130/0-8137-2380-9.67
    Vanderhaeghe,O.,2004.Structural Development of the Naxos Migmatite Dome.Geological Society of America Special Papers,380:211-227.https://doi.org/10.1130/0-8137-2380-9.211
    Wang,X.X.,Zhang,J.J.,Santosh,M.,et al.,2012.AndeanType Orogeny in the Himalayas of South Tibet:Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana.Lithos,154:248-262.https://doi.org/10.1016/j.lithos.2012.07.011
    Wang,X.X.,Zhang,J.J.,Wang,J.M.,2016.Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya,and Its Tectonic Implications.Earth Science,41(6):982-998(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.082
    Wu,Z.H.,Ye,P.S.,Wu,Z.H.,et al.,2014.LA-ICP-MS Zircon U-Pb Ages of Tectonic-Thermal Events in the Yalaxiangbo Dome of Tethys Himalayan Belt.Geologcal Bulletin of China,33(5):595-605(in Chinese with English abstract).
    Xie,Y.L.,Li,L.M.,Wang,B.G.,et al.,2017.Genesis of the Zhaxikang Epithermal Pb-Zn-Sb Deposit in Southern Tibet,China:Evidence for a Magmatic Link.Ore Geology Reviews,80:891-909.https://doi.org/10.1016/j.oregeorev.2016.08.007
    Yan,D.P.,Zhou,M.F.,Robinson,P.T.,et al.,2012.Constraining the Mid-Crustal Channel Flow beneath the Tibetan Plateau:Data from the Nielaxiongbo Gneiss Dome,SETibet.International Geology Review,54(6):615-632.https://doi.org/10.1080/00206814.2010.548153
    Zeng,L.S.,Gao,L.E.,Tang,S.H.,et al.,2014.Eocene Magmatism in the Tethyan Himalaya,Southern Tibet.Geological Society,London,Special Publications,412(1):287-316.https://doi.org/10.1144/sp412.8
    Zeng,L.S.,Gao,L.E.,Xie,K.J.,et al.,2011.Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust.Earth and Planetary Science Letters,303(3-4):251-266.https://doi.org/10.1016/j.TIFl.2011.01.005
    Zeng,L.S.,Liu,J.,Gao,L.E.,et al.,2009.Early Oligocene Anatexis in the Yardoi Gneiss Dome,Southern Tibet and Geological Implications.Chinese Science Bulletin,54(3):373-381(in Chinese with English abstract).
    Zhang,J.J.,Guo,L.,Zhang,B.,2007.Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt,China.Chinese Journal of Geology,42(1):16-30(in Chinese with English abstract).
    Zhang,L.K.,Li,G.M.,Cao,H.W.,2018.Zircon U-Pb Geochronology and Hf Isotope Compositions of the Granitic Gneiss from Cuonadong Dome in Tethys Himalaya,Tibet and Its Geological Significance.Geology in China,in Press.
    Zhang,J.Y.,Liao,Q.A.,Li,D.W.,2003.Geochemical Features of the High Himalayan Leucogranites of Dingjie Area,Tibet:Implication for Magma Sources.Geological Science and Technology Information,22(3):9-14(in Chinese with English abstract).
    Zhang,S.Z.,Li,F.Q.,Li,Y.,et al.,2014.Early Ordovician Strongly Peraluminous Granite in the Middle Section of the Yarlung Zangbo Junction Zone and Its Geological Significance.Science China Earth Sciences,57(4):630-643.https://doi.org/10.1007/s11430-013-4721-3
    Zhang,Z.,Zhang,L.K.,Li,G.M.,et al.,2017a.The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the OreControlling Role of North Himalaya Gneiss Domes.Acta Geoscientica Sinica,38(5):754-766(in Chinese with English abstract).
    Zhang,Z.,Song,J.L.,Tang,J.X.,et al.,2017b.Petrogenesis,Diagenesis and Mineralization Ages ofGalale Cu-Au Deposit,Tibet:Zircon U-Pb Age,Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science,42(6):862-880(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.523
    Zhou,Q.,Li,W.C.,Qing,C.S.,et al.,2017.Origin and Tectonic Implications of theZhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Evidence from Structures,Re-Os-Pb-S Isotopes,and Fluid Inclusions.Mineralium Deposita,53(4):585-600.https://doi.org/10.13039/501100001809
    Zhu,D.C.,Chung,S.L.,Mo,X.X.,et al.,2009.The 132 Ma Comei-Bunbury Large Igneous Province:Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia.Geology,37(7):583-586.https://doi.org/10.1130/g30001a.1
    Zhu,D.C.,Pan,G.T.,Mo,X.X.,et al.,2007.Petrogenesis of Volcanic Rocks in the Sangxiu Formation,Central Segment of Tethyan Himalaya:A Probable Example of Plume-Lithosphere Interaction.Journal of Asian Earth Sciences,29(2-3):320-335.https://doi.org/10.1016/j.jseaes.2005.12.004
    Zhu,D.C.,Xia,Y.,Qiu,B.B.,et al.,2013.Why do We Need to Propose the Early Cretaceous Comei Large Igneous Province in Southeastern Tibet?Acta Petrologica Sinica,29(11):3659-3670(in Chinese with English abstract).
    Zhu,D.C.,Zhao,Z.D.,Niu,Y.L.,et al.,2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research,23(4):1429-1454.https://doi.org/10.13039/501100001809
    高利娥,高家昊,赵令浩,等,2017.藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用.岩石学报,33(8):2395-2411.
    高利娥,曾令森,侯可军,等,2013a.藏南马拉山穹窿佩枯错复合淡色花岗岩体的多期深熔作用.科学通报,58(27):2810-2822.
    高利娥,曾令森,王莉,等,2013b.藏南马拉山高钙二云母花岗岩的年代学特征及其形成机制.岩石学报,29(6):1995-2012.
    辜平阳,何世平,李荣社,等,2013.藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义.岩石学报,29(3):756-768.
    侯增谦,曲晓明,杨竹森,等,2006.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质,25(6):629-651.
    胡古月,曾令森,高利娥,等,2011.藏南隆子地区恰嘎流纹质次火山岩稀土元素类似四分组效应.地质通报,30(1):82-94.
    李德威,刘德民,廖群安,等,2003.藏南萨迦拉轨岗日变质核杂岩的厘定及其成因.地质通报,22(5):303-307.
    李光明,张林奎,焦彦杰,等,2017.西藏喜马拉雅成矿带错那洞超大型铍钨锡多金属矿床的发现及意义.矿床地质,36(4):1003-1008.
    林彬,唐菊兴,郑文宝,等,2014.藏南扎西康矿区流纹岩的岩石地球化学、锆石U-Pb测年和Hf同位素组成.地质论评,60(1):178-189.
    林彬,唐菊兴,郑文宝,等,2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志,35(3):391-406.
    刘正宏,潘博文,李鹏川,等,2017.内蒙古大青山高级变质岩韧性剪切带及其流变机制.地球科学,42(12):2105-2116.https://doi.org/10.3799/dqkx.2017.135
    王晓先,张进江,王佳敏,2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学,41(6):982-998.https://doi.org/10.3799/dqkx.2016.082
    吴珍汉,叶培盛,吴中海,等,2014.特提斯喜马拉雅构造带雅拉香波穹隆构造热事件LA-ICP-MS锆石U-Pb年龄证据.地质通报,33(5):595-605.
    曾令森,刘静,高利娥,等,2009.藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义.科学通报,54(3):373-381.
    张金阳,廖群安,李德威,2003.西藏定结地区高喜马拉雅淡色花岗岩的地球化学特征与岩浆源区研究.地质科技情报,22(3):9-14.
    张进江,郭磊,张波,2007.北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征.地质科学,42(1):16-30.
    张林奎,李光明,曹华文,等,2018.西藏特提斯喜马拉雅错那洞穹隆花岗质片麻岩锆石U-Pb年龄、Hf同位素特征及其地质意义.中国地质,待刊.
    张志,张林奎,李光明,等,2017a.北喜马拉雅错那洞穹隆:片麻岩穹隆新成员与穹隆控矿新命题.地球学报,38(5):754-766.
    张志,宋俊龙,唐菊兴,等,2017b.西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球科学,42(6):862-880.https://doi.org/10.3799/dqkx.2017.523
    朱弟成,夏瑛,裘碧波,等,2013.为什么要提出西藏东南部早白垩世措美大火成岩省.岩石学报,29(11):3659-3670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700