用户名: 密码: 验证码:
不同水分条件下葡萄临界氮稀释曲线模型的建立及氮素营养诊断
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Establishment of a Critical Nitrogen Dilution Model for Grapes and Nitrogen Nutrition Diagnosis under Different Water Conditions
  • 作者:李佳帅 ; 杨再强 ; 李永秀 ; 江梦圆 ; 赵和丽 ; 韦婷婷 ; 张旭然
  • 英文作者:LI Jia-shuai;YANG Zai-qiang;LI Yong-xiu;JIANG Meng-yuan;ZHAO He-li;WEI Ting-ting;ZHANG Xu-ran;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science& Technology;Jiangsu Provincial Key Laboratory of Agrometeorology;
  • 关键词:葡萄 ; 临界氮浓度 ; 氮素营养指数 ; 氮素吸收 ; 干物质积累
  • 英文关键词:Grape;;Nitrogen critical concentration;;Nitrogen nutrition index;;Nitrogen uptake;;Dry matter accumulation
  • 中文刊名:ZGNY
  • 英文刊名:Chinese Journal of Agrometeorology
  • 机构:南京信息工程大学气象灾害预报预警与评估协同创新中心;江苏省农业气象重点实验室;
  • 出版日期:2019-08-08
  • 出版单位:中国农业气象
  • 年:2019
  • 期:v.40
  • 基金:江苏省科技支撑项目(BE2015693)
  • 语种:中文;
  • 页:ZGNY201908005
  • 页数:11
  • CN:08
  • ISSN:11-1999/S
  • 分类号:51-61
摘要
以1a生葡萄植株"红提"为试材,在Venlo型试验温室内进行土壤水分和施氮量双因素区组试验。试验设置4个灌水水平,分别为正常灌溉量W1(田间最大持水量的70%~80%)、轻度水分胁迫W2(60%~70%)、中度水分胁迫W3(50%~60%)和重度水分胁迫W4(30%~40%);设置4个施氮水平,分别为1.5倍推荐施氮量(N1,25.5g?plant-1)、正常推荐施氮量(N2,17g?plant-1)、0.5倍推荐施氮量(N3,8.5g?plant-1)和不施用氮肥(N4,0g?plant-1)。每10d观测一次植株体内氮浓度和植株地上部生物量,利用不同水分条件下葡萄植株在一定生长时期内所获最大生物量时对应的最小氮浓度值即临界氮浓度(Nc)构建葡萄临界氮浓度稀释曲线模型,并在此基础上建立氮素吸收模型(Nupt)和氮素营养指数模型(NNI),对不同水分条件下葡萄氮营养状况进行定量诊断。结果表明:设施葡萄植株临界氮浓度与地上部生物量存在幂函数关系,随着灌水量的增加,葡萄植株临界氮浓度值增大,氮素吸收量及地上部生物量也呈增加趋势;在W1、W2水分条件下,葡萄植株生物量随施氮量增加而增加,而W3和W4处理葡萄生物量随施氮量增加呈先增后降的趋势;在相同水分条件下,氮浓度随施氮量增加而增加,随葡萄生长进程而降低;利用Nupt和NNI模型可对植株体内氮营养元素亏缺与否进行有效诊断。
        In this paper, a two-factor pot experiment was carried out in the Venlo-type greenhouse, using the annual grape of "Hongti" variety as experimental material. There were four irrigation levels and four nitrogen application levels in the two-factor pot experiment. Four irrigation levels were normal irrigation(W1, 70%-80% of the maximum water holding capacity in the field), slight drought stress(W2, 60%-70%), moderate drought stress(W3,50%-60%) and extra severe drought tress(W4, 30%-40%). And four nitrogen application levels were 1.5 times normal recommended nitrogen application rate(N1, 25.5 g?plant-1), normal recommended nitrogen application rate(N2, 17 g?plant-1), 0.5 times normal recommended nitrogen application rate(N3, 8.5 g?plant-1) and no nitrogen application(N4, 0 g?plant-1). The nitrogen concentration in the plant and the aboveground biomass of the plant were observed every 10 days. The minimum nitrogen concentration corresponding to the maximum biomass obtained by grape plants under different water conditions in a certain period is called Nitrogen critical concentration(Nc), it can be used to construct the model of nitrogen critical concentration dilution curve of grape, which can further establish Nitrogen uptake model(Nupt) and Nitrogen Nutrition Index model(NNI) for quantitative diagnosis of nitrogen nutrition status of grapes under different water conditions.The results showed: there was a power function relationship between the nitrogen critical concentration and aboveground biomass of grape plants, which embodied as the nitrogen critical concentration, nitrogen uptake and aboveground biomass of grape plants all increased as the irrigation amount increasing. As nitrogen application increased, the biomass of grape plants under treatments of W1 and W2 increased, while that under W3 and W4, increased first and then decreased. Under the same water condition, the nitrogen concentration increased with the increase of nitrogen application and decreased with the progress of grapes growth. The established Nupt and NNI models can be used to effectively diagnose the deficiency of nitrogen nutrients in plants.
引文
[1]穆维松,高阳,王秀娟,等.我国设施葡萄生产的成本收益比较研究[J].中外葡萄与葡萄酒,2014,(3):20-24.Mu W S,Gao Y,Wang X J,et al.Comparative cost-benefit analysis on grape protected cultivation[J].Sino-Overseas Grapevine&Wine,2014,(3):20-24.(in Chinese)
    [2]吉沐祥,李国平,芮东明,等.江苏省鲜食葡萄病虫害绿色防控技术规程[J].江苏农业科学,2015,43(7):107-109.Ji M X,Li G P,Rui D M,et al.Technical specification for green control of diseases and insect pests of fresh grapevine in Jiangsu province[J].Jiangsu Agricultural Sciences,2015,43(7):107-109.(in Chinese)
    [3]Greenwood D J,Gastal F,Lemaire G,et al.Growth rate and%Nof field grown crops:theory and experiments[J].Annals of Botany,1991,67(2):181-190.
    [4]王新,马富裕,刁明,等.滴灌番茄临界氮浓度、氮素吸收和氮营养指数模拟[J].农业工程学报,2013,29(18):107-116.Wang X,Ma F Y,Diao M,et al.Simulation of critical nitrogen concentration,nitrogen uptake and nitrogen nutrition index of processing tomato with drip irrigation[J].Transactions of the CSAE,2013,29(18):107-116.(in Chinese)
    [5]Lemaire G,Gastal F.N uptake and distribution in plant canopies[M].Diagnosis of the Nitrogen Status in Crops,1997,53(370):3-43.
    [6]Justes E,Mary B,Meynard J M,et al.Determination of a critical nitrogen dilution curve for winter wheat crops[J].Annals of Botany,1994,74(4):397-407.
    [7]Sheehy J E,Dionora M J A,Mitchell P L,et al.Critical nitrogen concentrations:implications for high-yielding rice(Oryza sativa L.)cultivars in the tropics[J].Field Crops Research,1998,59(1):31-41.
    [8]Colnenne C,Meynard J M,Reau R,et al.Determination of a critical nitrogen dilution curve for winter oilseed rape[J].Annals of Botany,1998,81(2):311-317.
    [9]Daniel P,Gilles L.Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops:determination of critical N concentration[J].Plant and Soil,1999,216(1-2):65-82.
    [10]Debaeke P,Oosterom E J V,Justes E,et al.A species-specific critical nitrogen dilution curve for sunflower(Helianthus annuus L.)[J].Field Crops Research,2012,136:76-84.
    [11]Tei F,Benincasa P,Guiducci M.Critical nitrogen concentration in processing tomato[J].European Journal of Agronomy,2002,18(1):45-55.
    [12]Ekbladh G,Witter E.Determination of the critical nitrogen concentration of white cabbage[J].European Journal of Agronomy,2010,33(4):276-284.
    [13]Giletto C M,Echeverría H E.Critical nitrogen dilution curve for processing potato in Argentinean humid pampas[J].American Journal of Potato Research,2012,89(2):102-110.
    [14]Oosterom E J V,Carberry P S,Muchow R C.Critical and minimum N contents for development and growth of grain sorghum[J].Field Crops Research,2001,70(1):55-73.
    [15]Yasuor H,Ben-Gal A,Yermiyahu U,et al.Nitrogen management of greenhouse pepper production:agronomic nutritional,and environmental implications[J].Hort Science,2013,48(10):1241-1249.
    [16]薛晓萍,沙奕卓,郭文琦,等.棉花蕾花铃生物量、氮累积特征及临界氮浓度稀释模型[J].生态学报,2008,28(12):6204-6211.Xue X P,Sha Y Z,Guo W Q,et al.Accumulation characteristics of biomass and nitrogen and critical nitrogen concentration dilution model of cotton reproductive organ[J].Acta Ecologica Sinica,2008,28(12):6204-6211.(in Chinese)
    [17]梁效贵,张经廷,周丽丽,等.华北地区夏玉米临界氮稀释曲线和氮营养指数研究[J].作物学报,2013,39(2):292-299.Liang X G,Zhang J T,Zhou L L,et al.Critical nitrogen dilution curve and nitrogen nutrition index for summer maize in North China Plain[J].Acta Agronomica Sinica,2013,39(2):292-299.(in Chinese)
    [18]强生才,张富仓,向友珍,等.关中平原不同降雨年型夏玉米临界氮稀释曲线模拟及验证[J].农业工程学报,2015,31(17):168-175.Qiang S C,Zhang F C,Xiang Y Z,et al.Simulation and verification of critical nitrogen dilution curve for summer maize in Guanzhong Plain during different rainfall years[J].Transactions of the CSAE,2015,31(17):168-175.(in Chinese)
    [19]向友珍,张富仓,范军亮,等.基于临界氮浓度模型的日光温室甜椒氮营养诊断[J].农业工程学报,2016,32(17):89-97.Xiang Y Z,Zhang F C,Fan J L,et al.Nutrition diagnosis for Nin bell pepper based on critical nitrogen model in solar greenhouse[J].Transactions of the CSAE,2016,32(17):89-97.(in Chinese)
    [20]杨慧,曹红霞,柳美玉,等.水氮耦合条件下番茄临界氮浓度模型的建立及氮素营养诊断[J].植物营养与肥料学报,2015,21(5):1234-1242.Yang H,Cao H X,Liu M Y,et al.Simulation of critical nitrogen concentration and nitrogen nutrition index of tomato under different water and nitrogen conditions[J].Journal of Plant Nutrition and Fertilizer,2015,21(5):1234-1242.(in Chinese)
    [21]刘明,吕爱锋,武建军,等.干旱对农业生态系统影响研究进展[J].中国农学通报,2014,30(32):165-171.Liu M,Lv A F,Wu J J,et al.A review of impacts of drought on agro-ecosystem[J].Chinese Agricultural Science Bulletin,2014,30(32):165-171.(in Chinese)
    [22]王奎稳.设施葡萄秋季施肥技术[J].落叶果树,2016,48(3):30.Wang K W.Autumn fertilization techniques for protected grapes[J].Deciduous Fruits,2016,48(3):30.(in Chinese)
    [23]倪荣梅.不同水肥管理对设施葡萄产量和品质的影响研究[J].新疆农垦科技,2016,39(4):62-64.Ni R M.Effects of different water and fertilizer management on yield and quality of protected grape[J].Xinjiang Farm Research of Science and Technology,2016,39(4):62-64.(in Chinese)
    [24]Bao S D.Soil and agricultural chemistry analysis[M].Beijing:China Agriculture Press,1999.
    [25]Gastal F,Lemaire G.N uptake and distribution in crops:an agronomical and ecophysiological perspective[J].Journal of Experimental Botany,2002,53(370):789-799.
    [26]岳松华,刘春雨,黄玉芳,等.豫中地区冬小麦临界氮稀释曲线与氮营养指数模型的建立[J].作物学报,2016,42(6):909-916.Yue S H,Liu C Y,Huang Y F,et al.Simulating critical nitrogen dilution curve and modeling nitrogen index in winter wheat in central Henan area[J].Acta Agronomica Sinica,2016,42(6):909-916.(in Chinese)
    [27]Meynard J M,David G.Diagnostic de lelaboration du rendement des cultures[J].Cahiers Agriculture,1992,1(1):9-19.
    [28]赵薇,张治平,缪旻珉.番茄临界氮浓度模型的建立及氮素营养诊断[J].中国农学通报,2018,34(22):37-44.Zhao W,Zhang Z P,Miao M M.Establishment of tomato critical nitrogen concentration model and diagnosis of nitrogen nutrition[J].Chinese Agricultural Science Bulletin,2018,34(22):37-44.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700