用户名: 密码: 验证码:
不同轴压比下装配整体式地铁车站拼装柱抗震性能试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on seismic performance of precast column in assembled monolithic subway station under different axial compression ratio
  • 作者:杜修力 ; 刘洪涛 ; 许成顺 ; 金浏 ; 罗富荣 ; 李松梅
  • 英文作者:DU Xiuli;LIU Hongtao;XU Chengshun;JIN Liu;LUO Furong;LI Songmei;Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education, Beijing University of Technology;Beijing MTR Construction Administration Corporation;Beijing Rail and Transit Design & Research Institute Co., Ltd;
  • 关键词:装配整体式地铁车站 ; 拼装柱 ; 轴压比 ; 低周循环加载试验 ; 抗震性能
  • 英文关键词:assembled monolithic subway station;;precast column;;axial compression ratio;;low-cyclic reversed loading experiment;;seismic performance
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:北京工业大学城市与工程安全减灾教育部重点实验室;北京市轨道交通建设管理有限公司;北京市轨道交通设计研究院有限公司;
  • 出版日期:2018-08-14 17:37
  • 出版单位:建筑结构学报
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金创新研究群体项目(51421005);; 北京市交通行业科技项目(2016-gdsbssc-01-029)
  • 语种:中文;
  • 页:JZJB201811002
  • 页数:9
  • CN:11
  • ISSN:11-1931/TU
  • 分类号:15-23
摘要
为评价装配整体式地铁车站预制拼装柱的抗震性能,以北京某装配整体式地铁车站为研究背景,设计并制作了3个足尺预制拼装中柱和3个作为对比的足尺现浇整体中柱。采用低周往复循环加载对其进行试验,研究中柱在不同轴压比(0.2,0.5,0.85)下的破坏形态、滞回特性、承载力、变形能力、耗能性能以及适宜轴压比等。试验结果表明:随着轴压比的增大,预制拼装柱和现浇整体柱的水平承载力提高,变形能力和耗能性能逐渐降低。相同轴压比下,预制拼装柱和现浇整体柱的破坏过程相似,但预制拼装柱的塑性铰上移;轴压比为0.2时,预制拼装柱的变形能力低于现浇整体柱的变形能力;轴压比为0.5,0.85时,预制拼装柱的变形能力优于现浇整体柱的变形能力,尤其是轴压比为0.5时预制拼装柱的变形优势最为明显。预制拼装柱的耗能性能随着轴压比的增加而降低,且相对于现浇整体柱的耗能性能显著降低。预制拼装柱的位移延性系数是现浇整体柱的位移延性系数的1.16~1.33倍。随着轴压比的增加,两者的位移延性系数逐渐降低,但预制拼装柱的位移延性系数降低程度明显快于现浇整体柱的位移延性系数降低程度。基于相同轴压比下试件的承载能力和变形能力,建议预制拼装柱的适宜轴压比为0.5。
        In order to evaluate the seismic performance of precast column of assembled monolithic subway station, three full-scale precast concrete interior columns and three full-scale cast-in-place concrete interior columns were designed based on the assembled monolithic subway station in Beijing. Main seismic behaviors of interior columns were studied under low-cyclic reversed loading, such as failure modes, hysteretic characteristics, bearing capacity, deformation capacity, energy dissipation capacity and optimum axial compression ratio under different axial compression ratios(0.2,0.5,0.85). The results show that the horizontal bearing capacity of columns increases while the deformation capacity and energy dissipation capacity decrease with the increase of axial compression ratio. The failure modes are almost similar under the same axial compression ratio, but the position of plastic hinge of precast column moves upwards gradually. Although the deformability of precast columns is worse than that of cast-in-place columns when the axial compression ratio is 0.2, the results are opposite when the axial compression ratios are 0.5 and 0.85. Especially, the advantage of precast column is obvious when the axial compression ratio is 0.5. The energy dissipation capacity of precast column decreases with the increase of axial compression ratio and it dereases significantly compared with cast-in-place concrete column. The ductility of precast column is 1.16-1.33 times of cast-in-place column and they decrease gradually with the increase of axial compression ratio, but decreased degree of displacement ductility of precast columns is obviously larger than that of cast-in-place columns. Based on bearing capacity and deformability with the same axial compression ratio, the appropriate axial compression ratio is suggested to be about 0.5.
引文
[1] 范力.装配式预制混凝土框架结构抗震性能研究[D]. 上海:同济大学,2007:7-10.(FAN Li. Investigation on seismic behavior of jointed precast concrete frame structures[D]. Shanghai:Tongji University,2007:7-10.(in Chinese))
    [2] 伍云天,明亮,肖岩,等. 装配式钢梁-预制柱组合框架抗震性能试验研究[J]. 建筑结构,2013,43(9):66-71.(WU Yuntian,MING Liang,XIAO Yan,et al. Experimental study on seismic behavior of assembled steel beam-PC column composite frames[J]. Building Structure,2013,43(9):66-71.(in Chinese))
    [3] RIVA P. Seismic behavior of precast column-to-foundation grouted sleeve connections[C]//International Conference on Advances in Engineering Structures,Mechanics and Construction. Berlin, Germany:Springer,2006:121-128.
    [4] KIM Y M. A study of pipe splice sleeves for use in precast beam-column connections[D]. Austin:University of Texas,2000.
    [5] POPA V,PAPURCU A,COTOFANA D,et al. Experimental testing on emulative connections for precast columns using grouted corrugated steel sleeves[J]. Bulletin of Earthquake Engineering,2015,13(8):2429-2447.
    [6] 张臻. 高层钢筋混凝土结构中预制拼装柱的抗震性能研究[D]. 哈尔滨:哈尔滨工业大学,2013:16- 43.(ZHANG Zhen. Seismic performance research of precast concrete columns in high-rise buildings[D]. Harbin:Harbin Institute of Technology,2013:16- 43.(in Chinese))
    [7] HABER Z B,SAIIDI M S,SANDERS D H. Seismic performance of precast columns with mechanically spliced column-footing connections[J]. ACI Structural Journal,2014,111(3):639- 650.
    [8] 陈俊,肖岩,尹齐. 预埋波纹套管的钢筋-高强浇筑料黏结锚固性能试验研究[J].建筑结构学报,2015,36(7):140-147.(CHEN Jun,XIAO Yan,YIN Qi. Bonding strength of rebar anchorage in embedded corrugated sleeve with high strength grout[J]. Journal of Building Structures,2015,36(7):140-147.(in Chinese))
    [9] 陈俊,肖岩. 纵筋浆锚连接预制柱的抗震性能试验研究[J]. 土木工程学报,2016,49(5):63-73.(CHEN Jun,XIAO Yan. Experimental study on seismic behavior of precast concrete column with longitudinal reinforcement grouting-anchoring connections[J]. China Civil Engineering Journal,2016,49(5):63-73.(in Chinese))
    [10] 尹齐,陈俊,彭黎,等. 钢筋插入式预埋波纹管浆锚连接的锚固性能试验研究[J]. 工业建筑,2014,44(11):104-107.(YIN Qi,CHEN Jun,PENG Li,et al.Experimental study of anchorage performance of grouting connection with steel bars inserted pre-buried bellows[J]. Industrial Construction,2014,44(11):104-107.(in Chinese))
    [11] 姜海西,王志强,沈佳伟. 灌浆金属波纹管连接预制拼装立柱抗震性能试验研究[J]. 结构工程师,2016,32(5):132-138.(JIANG Haixi,WANG Zhiqiang,SHEN Jiawei. Anti-seismic performance testing of prefabricate assembly pillars connected with grouting metal corrugated pipe[J].Structural Engineers,2016,32(5):132-138.(in Chinese))
    [12] 陈俊,方园,荣晃,等. 不同连接方式下预制钢筋混凝土短柱抗震性能试验研究[J]. 湘潭大学自然科学学报,2014,36(3):28-34.(CHEN Jun,FANG Yuan,RONG Huang, et al. Seismic performance experimental study of precast reinforced concrete short columns with different connections[J]. Natural Science Journal of Xiangtan University,2014,36(3):28-34.(in Chinese))
    [13] 陈建伟,苏幼坡. 预制装配式剪力墙结构及其连接技术[J]. 世界地震工程,2013,29(1):38- 48.(CHEN Jianwei,SU Youpo. Prefabricated concrete shear wall structure and its connecting technology[J]. World Earthquake Engineering,2013,29(1):38- 48.(in Chinese))
    [14] 朱张峰,郭正兴. 预制装配式剪力墙结构节点抗震性能试验研究[J]. 土木工程学报,2012,45(1):69-76.(ZHU Zhangfeng,GUO Zhengxing. Seismic test and analysis of joints of new precast shear wall structures[J]. China Civil Engineering Journal,2012,45(1):69-76.(in Chinese))
    [15] 赵冬冬,刘晶波,王文晖. 考虑中柱与顶底板不同连接刚度时地铁车站弹塑性地震反应分析[J]. 北京工业大学学报,2011,37(增刊1):42- 48.(ZHAO Dongdong,LIU Jingbo,WANG Wenhun. Time history analysis of elasto-plastic seismic response of a subway station structure with different connectional stiffness between columns and slabs[J]. Journal of Beijing University of Technology,2011,37(Suppl.1):42- 48. (in Chinese))
    [16] 权登州. 黄土地区地铁车站地震反应特征与抗震计算方法研究[D]. 西安:长安大学,2016:4-14.(QUAN Dengzhou. Seismic response characteristic and calculation method of subway station in loess[D].Xi’an:Chang’an University,2016:4-14.(in Chinese))
    [17] 刘祥庆,刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学,2008,25(10): 150-157.(LIU Xiangqing,LIU Jingbo. Time history analysis of elasto-plastic seismic response of a subway station structure with arched cross section based on fiber model[J].Engineering Mechanics,2008,25(10):150-157.(in Chinese))
    [18] 蒋英礼,赵伯明,胡晓勇. 软土地铁车站中柱在强震作用下的响应研究[J]. 防灾减灾工程学报,2009,29(4): 405- 410.(JIANG Yingli,ZHAO Boming,HU Xiaoyong. Study on response of centre column of metro station in soft soils to strong earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering,2009,29(4):405- 410.(in Chinese))
    [19] 杜修力,王刚,路德春. 日本阪神地震中大开地铁车站地震破坏机理分析[J]. 防灾减灾工程学报,2016,36(2):165-177.(DU Xiuli,WANG Gang,LU Dechun. Earthquake damage mechanism analysis of Daikaimetro station by Kobe earthquake[J].Journal of Disaster Prevention and Mitigation Engineering,2016,36(2):165-177.(in Chinese))
    [20] 杜修力,马超,路德春,等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报,2017,50(1):53- 62.(DU Xiuli,MA Chao,LU Dechun,et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal,2017,50(1):53- 62.(in Chinese))
    [21] 杜修力,李洋,许成顺,等. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报,2018,40(2):223-236.(DU Xiuli,LI Yang,XU Chengshun,et al. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe earthquake[J]. Chinese Journal of Geotechnical Engineering,2018,40(2):223-236.(in Chinese))
    [22] 杜修力,刘洪涛,路德春,等. 装配整体式地铁车站侧墙底节点抗震性能研究[J]. 土木工程学报,2017,50(4):38- 47.(DU Xiuli,LIU Hongtao,LU Dechun,et al. Study on seismic performance of sidewall joint in assembled monolithic subway station[J]. China Civil Engineering Journal,2017,50(4):38- 47.(in Chinese))
    [23] 建筑抗震试验规程:JGJ/T 101—2015[S]. 北京:中国建筑工业出版社,2015.(Specification of seismic test of building:JGJ/T 101—2015[S]. Beijing:China Architecture & Building Press,2015.(in Chinese))
    [24] 张瑞玲. “一字形”短肢剪力墙加暗撑时的仿真分析[D]. 兰州:兰州理工大学,2013:33-34.(ZHANG Ruiling. Seismic behavior analysis of I-shaped short pier shear wall with concealed bracings[D]. Lanzhou:Lanzhou University of Technology,2013:33-34.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700