用户名: 密码: 验证码:
超低排放下CFB锅炉内外脱硫系统匹配优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Matching optimization of internal and external desulfurization system of CFB boiler under ultra-low emission
  • 作者:张磊 ; 苑广存
  • 英文作者:ZHANG Lei;YUAN Guangcun;
  • 关键词:CFB锅炉 ; 超低排放 ; 脱硫系统 ; 建模优化 ; 经济性
  • 英文关键词:CFB boiler;;ultra low emission;;desulphurization system;;modeling optimization;;economy
  • 中文刊名:DLHB
  • 英文刊名:Electric Power Technology and Environmental Protection
  • 机构:神华国能山东建设集团有限公司;
  • 出版日期:2019-04-15
  • 出版单位:电力科技与环保
  • 年:2019
  • 期:v.35;No.163
  • 基金:神华集团有限责任公司科技创新项目(SHJT-17-27)
  • 语种:中文;
  • 页:DLHB201902012
  • 页数:3
  • CN:02
  • ISSN:32-1808/X
  • 分类号:64-66
摘要
为满足超低排放要求,CFB锅炉多采用炉内外两级脱硫系统。通过理论分析,最优的内外脱硫匹配方案,使整个机组在排放达标的前提下,脱硫、脱硝物料消耗及锅炉炉效的综合经济性最高。以此建立数学分析模型,对已完成超低排放改造的机组A、B,根据实炉试验测试的数据,确定不同负荷下最优的脱硫分配比例,用以指导运行,以期在满足排放要求的前提下,降低机组能耗。对未进行超低排放改造的机组C,根据不同的边际条件,进行最优脱硫分配比例的理论推算,从而为超低排放改造方案的选择提供依据。结果表明,不同负荷和硫含量下,最优的脱硫比例并不相同,据此优化运行,预计机组A全年节约费用108万元,机组B全年节约费用140万元。
        In order to meet the requirements of ultra-low emission, CFB boilers mostly adopt two-stage desulfurization system. Through theoretical analysis, there is an optimum matching scheme of internal and external desulfurization, so that the overall economy of the whole unit is the highest under the premise of emission compliance.A numerical analysis model was established based on the above analysis.For units A and B that had completed ultra-low emission renovation, the optimal desulfurization allocation ratio under different loads was determined according to the test data of actual furnace, so as to guide the operation and reduce the energy consumption of units on the premise of meeting the emission requirements. For unit C without ultra-low emission modification the optimal desulfurization allocation ratio in different boundary conditions was calculated theoretically, which provided a basis for the selection of ultra-low emission modification scheme. The results show that if the optimal desulfurization ratio is used, it is estimated that the example unit A saves 1.08 million yuan annually, and unit B saves 1.4 million yuan annually.
引文
[1]李青,李猷民. 火电厂节能减排手册(减排与清洁生产部分)[M].中国电力出版社,2015:110-115.
    [2]Zhao Y,Xu P Y,Fu D.Experimental study on simultaneous desulfurization and denitrification based on highly active absorbent[J].Journal of Environmental Sciences-China, 2006,18(2):281-286.
    [3]Tarelho L A C,Matos M A A.Pereira F J M A,The influence of operational parameters on SO2 removal by limestone during fluidized bed coal combustion[J].Fuel Processing Technology, 2005 (86):1385-1401.
    [4]Manovica V,Gruborb B,Loncarevicc D. Modelling of inherent SO2 capture in coal particles during combustion in fluidized bed[J].Chemical Engineering Science, 2006 (61):1676-1685.
    [5]杨彦卿,刘志强,谷威,等.300MWCFB炉内脱硫脱硝优化运行调整研究与实践[J].神华科技,2015,13(3):51-53.
    [6]Gungor A,Eskin N. Effects of operational parameters on emission performance and combustion efficiency in small-scale CFBCs[J].J Chin Inst Chem Eng, 2008 (39):541-556.
    [7]岳光溪,吕俊复,徐鹏,等.循环流化床燃烧发展现状及前景分析[J].中国电力,2016,49(1):1-13.
    [8]李博,赵锦洋,吕俊复.燃煤烟气超低排放技术路线选择建议[J].电力科技与环保,2016,32(5):13-15.
    [9]段守保. 300MWCFB锅炉大气污染物超低排放改造技术研究[J]. 洁净煤技术,2016,22(6):88-94.
    [10]王建峰,李壮,刘沛奇,等. CFB锅炉二次脱硫技术与经济分析[J]. 中国电力,2014,47(6):132-134.
    [11]王小明.干法及半干法脱硫技术[J].电力科技与环保,2018,34(1):45-48.
    [12]夏力伟,张学锁,曾峥, 等.燃煤电厂超低排放技术路线选择探讨[J].电力科技与环保,2017,33(1):31-33.
    [13]魏星,姜兴华,金森旺,等.300MW机组CFB锅炉超低排放两级联合脱硫匹配方式试验[J].热力发电,2017,46(6):107-112.
    [14]祝云飞,阎维平,王禹朋,等. CFB锅炉两级脱硫系统的技术经济性分析及优化[J].电力建设,2015,33(6):109-113.
    [15]张磊,王少臣,苑广存,等.CFB锅炉内外脱硫系统超低排放容量分配优化[J].洁净煤技术,2018,24(4):120-125.
    [16]廖永进,王力,骆文波.火电厂烟气脱硫装置成本费用的研究[J].电力建设,2007,28(5):82-86.
    [17]张建生.超临界350MW机组CFB锅炉脱硫脱硝经济性分析[J].热力发电,2017,46(11):114-118.
    [18]辛胜伟.大型循环流化床锅炉SO2超低排放改造关键技术研究[J].电力科技与环保,2017,33(4):10-14.
    [19]陈镇超.SNCR应用于130t/h循环流化床锅炉烟气脱硝的研究[J].能源工程,2014 (5):61-67.
    [20]GB/T 10184-2015,电站锅炉性能试验规程[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700