用户名: 密码: 验证码:
低雷诺数下ITTC尺度效应换算方法的改进
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Improvements of Scaling Method Recommended by ITTC at a Lower Reynolds Number Range
  • 作者:姚慧岚 ; 张怀新
  • 英文作者:YAO Huilan;ZHANG Huaixin;State Key Laboratory of Ocean Engineering;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai Jiao Tong University;
  • 关键词:船用螺旋桨 ; 推进性能 ; 雷诺数 ; 过渡流 ; 尺度效应
  • 英文关键词:marine propeller;;propulsion performance;;Reynolds number;;transition flow;;scale effects
  • 中文刊名:SHJT
  • 英文刊名:Journal of Shanghai Jiaotong University
  • 机构:上海交通大学海洋工程国家重点实验室;高新船舶与深海开发装备协同创新中心;
  • 出版日期:2019-01-28
  • 出版单位:上海交通大学学报
  • 年:2019
  • 期:v.53;No.395
  • 基金:国家自然科学基金(51479116,11272216)
  • 语种:中文;
  • 页:SHJT201901006
  • 页数:7
  • CN:01
  • ISSN:31-1466/U
  • 分类号:39-45
摘要
应用基于非结构化网格的过渡流模型,在商业CFD软件STAR-CCM+平台上,对不同雷诺数(Re)下螺旋桨模型和实桨进行数值模拟,分析了螺旋桨叶面和叶背边界层的流体流动随Re的变化情况,将浆叶0.75R剖面压力面和吸力面的摩擦阻力系数的数值模拟结果与国际船模试验池会议(ITTC)推荐的尺度效应换算公式以及平板摩擦阻力系数计算公式的计算结果进行对比,并对ITTC尺度效应换算方法在较低雷诺数下进行了改进,即应用不同的公式分别计算叶面和叶背的摩擦阻力系数.结果表明,螺旋桨叶面与叶背边界层的流体流动不同,故吸力面和压力面的摩擦阻力系数计算公式有所不同.当Re较小(接近临界雷诺数)时,改进方法比ITTC尺度效应换算方法计算的结果更准确;当Re>1.0×106时,改进方法与ITTC尺度效应换算方法的计算结果基本一致;当Re>2.0×106时,Re越大,2种方法的计算结果偏离实际值越多.
        A transition model based on unstructured mesh was applied for simulation of the model and full scale propeller with varied Reynolds number(Re)on the commercial software STAR-CCM+platform.Changes of boundary-layer flow over blade face and blade back with Re were studied.Numerical results of friction coefficient of the 0.75 Rblade section were compared with those calculated by the ITTC formulas and the plate resistance formulas.The scaling method recommended by ITTC was improved at low Reynolds number range that two formulas were proposed for calculating viscous force coefficients of propeller blade face and blade back separately.Results show that the boundary-layer flow over blade face and blade back are different.Thus,different equations were needed to calculate the friction coefficients of suction side and pressure side of the blade section.Results show that when Reis small(close to the critical Re),results of the revised method are better than those of the ITTC method;when Re is greater than1.0×10~6,results by the two methods are basically the same;when Re continues to increase(greater than2.0×10~6),results calculated by the two methods both deviate from the actual value with the increase of Re.
引文
[1]HELMA S.A scaling procedure for modern propeller designs[J].Ocean Engineering,2015,120:165-174.
    [2]盛振邦,刘应中.船舶原理[M].上海:上海交通大学出版社,2005.SHENG Zhenbang,LIU Yingzhong.Ship theory[M].Shanghai:Shanghai Jiao Tong University Press,2005.
    [3]ITTC.Session on propulsion performance[C]∥Proceedings of the 15th ITTC Conference.Hague,Netherlands:ITTC,1978.
    [4]盛振邦,刘应中,盛正为,等.螺旋桨尺度作用的试验研究[J].上海交通大学学报,1979,13(2):74-87.SHENG Zhenbang,LIU Yingzhong,SHENG Zhengwei,et al.Experimental study on propeller scale effects[J].Journal of Shanghai Jiao Tong University,1979,13(2):74-87.
    [5]MLLER S B,ABDEL-MAKSOUD M,HILBERTG.Scale effects on propellers for large container vessels[C]∥First International Symposium on Marine Propulsors.Trondheim,Norway:SMP,2009:1-8.
    [6]SNCHEZ-CAJA A,GONZLEZ-ADALID J,PREZ-SOBRINO M,et al.Scale effects on tip loaded propeller performance using a RANSE solver[J].Ocean Engineering,2014,88(5):607-617.
    [7]BHATTACHARYYA A,KRASILNIKOV V,STEEN S.Scale effects on open water characteristics of a controllable pitch propeller working within different duct designs[J].Ocean Engineering,2016,112:226-242.
    [8]BHATTACHARYYA A,KRASILNIKOV V,STEEN S.A CFD-based scaling approach for ducted propellers[J].Ocean Engineering,2016,123:116-130.
    [9]YAO H L,ZHANG H X.A simple method for estimating transition locations on blade surface of model propellers to be used for calculating viscous force[J].International Journal of Naval Architecture and Ocean Engineering,2018,10(4):477-490.
    [10]YAO H L,ZHANG H X.Numerical simulation of boundary-layer transition flow of a model propeller and the full-scale propeller for studying scale effects[J].Journal of Marine Science and Technology,2018(2):1-15.
    [11]BARKMANN U.Potsdam propeller test case(PPTC),open water tests with the model propeller VP1304[R].Potsdam,Germany:Schiffbau-Versuchsanstalt Potsdam,2011.
    [12]MACH K P.Potsdam propeller test case(PPTC),LDV velocity measurements with the model propeller VP1304[R].Potsdam,Germany:Schiffbau-Versuchsanstalt Potsdam,2011.
    [13]SCHLEIN E,ROSEMANN H,SCHABER S.Transition detection and skin friction measurements on rotating propeller blades[C]∥28th Aerodynamic Measurement Technology,Ground Testing,and Flight Testing Conference.New Orleans,USA:AIAA,2012:1076-1086.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700