用户名: 密码: 验证码:
离体小结构诱导涡抑制圆柱绕流流动分离的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of the Induced Eddy by in Vitro Tiny Structure Suppresses Flow Separation for Flow Around Circular Cylinder
  • 作者:秦宏伟
  • 英文作者:QIN Hong-Wei;School of Energy and Power Engineering, University of Shanghai for Science and Technology;Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering;
  • 关键词:圆柱绕流 ; 对称的控制微小圆柱 ; 诱导涡 ; 有效的流动控制区域 ; 升阻力系数
  • 英文关键词:flow around circular cylinder;;tiny symmetrical control cylinders;;induced eddy;;effective flow control area;;lift and drag coefficient
  • 中文刊名:JNJS
  • 英文刊名:Energy Conservation Technology
  • 机构:上海理工大学能源与动力工程学院;上海市动力工程多相流动与传热重点实验室;
  • 出版日期:2019-01-26
  • 出版单位:节能技术
  • 年:2019
  • 期:v.37;No.213
  • 基金:国家自然科学基金(51536006);; 上海市科委科研计划项目(17060502300)
  • 语种:中文;
  • 页:JNJS201901004
  • 页数:8
  • CN:01
  • ISSN:23-1302/TK
  • 分类号:15-22
摘要
以圆柱绕流为代表的钝体绕流是工程实践中非常普遍的流动现象,推迟和抑制圆柱尾部涡脱落是流体力学研究的热点之一。在Re=100下,本文模拟了在圆柱附近加装两个对称的微小圆柱后的圆柱绕流,探究对称控制微小圆柱安装位置和直径对圆柱绕流的流场和整个系统的升阻力系数的影响。数值模拟结果表明:在圆柱附近加装对称控制的微小圆柱后,圆柱附近存在一个有效流动控制区域,且该区域的范围随着对称控制微小圆柱直径的增大而减小;在有效的流动控制区域内,添加对称控制的微小圆柱后,整个系统的升力幅值和时均阻力都减小,圆柱气动性能明显改善;在有效的流动控制区域外,添加对称控制小圆柱后,整个系统的升力幅值和时均阻力都增大,圆柱气动性能变差。
        A flow around bluff body represented by flow around circular cylinder is a very common phenomenon in engineering practice. Delaying and suppressing the cylindrical tail vortex shedding is one of the hot topics in the study of fluid mechanics. This paper simulates the flow around a cylinder with two tiny symmetrical control cylinders installed near the cylinder at Re=100, exploring the influence of the installation position and diameter of the two tiny symmetrical control cylinders on the flow field and the lift and drag coefficient of the whole system. The numerical results suggest that: after installing the tiny symmetrical control cylinders near the cylinder, there is an effective flow control area around cylinder and the scope of the area decreases along with the increase of the diameter of the control cylinders. Within the effective flow control area, the lift amplitude and the time-averaged drag of the whole system are reduced when adding the tiny symmetrical control cylinders, which means that the aerodynamic performance of the cylinder is improved significantly. Outside the effective flow control area, the lift amplitude and the time-averaged drag of the whole system is increased when adding the tiny symmetrical control cylinders, so that the aerodynamic performance of the cylinder becomes to deteriorate.
引文
[1]BOISSON H C,CHASSAING P,MINH H H.Conditional analysis of intermittency in the near wake of a circular cylinder[J].The Physics of Fluids,1983,26(3):653-658.
    [2]CHORIN A J.Numerical study of slightly viscous flow[J].Journal of Fluid Mechanics,1973,57(4):785-796.
    [3]BRAZA M,CHASSAING P,MINH H H.Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[J].Journal of fluid mechanics,1986(165):79-130.
    [4]苑明顺.高雷诺数圆柱绕流的二维大涡模拟[J].水动力学研究与进展,1992(a12):614-622.
    [5]BREUER M.Numerical and modeling influences on large eddy simulations for the flow past a circular cylinder[J].International Journal of Heat and Fluid Flow,1998,19(5):512-521.
    [6]张玮,王元,徐忠.圆柱绕流涡系演变的DPIV测试[J].空气动力学学报,2002,20(4):379-387.
    [7]张立.小雷诺数下圆柱绕流的涡态演化[J].机械科学与技术,2012,31(4):679-684.
    [8]KALRO V,TEZDUYAR T.Parallel 3D computation of unsteady flows around circular cylinders[J].Parallel computing,1997,23(9):1235-1248.
    [9]MOCKETT C,PERRIN R,REIMANN T,et al.Analysis of detached-eddy simulation for the flow around a circular cylinder with reference to PIV data[C]//IUTAM Symposium on Unsteady Separated Flows and their Control.Springer,Dordrecht,2009:417-427.
    [10]李燕玲,苏中地.高雷诺数下单圆柱绕流的DES三维数值模拟[J].中国计量学院学报,2013(4):364-369.
    [11]李寿英,顾明.斜、直圆柱绕流的CFD模拟[J].空气动力学学报,2005,23(2):222-227.
    [12]何颖,杨新民,陈志华.旋转圆柱绕流的流场特性[J].船舶力学,2015,19(5):501-508.
    [13]陈南茜.吸气条件对圆柱非定常分离流影响的数值研究[J].空气动力学学报,1994,12(3):288-294.
    [14]HWANG J Y,YANG K S,SUN S H.Reduction of flow-induced forces on a circular cylinder using a detached splitter plate[J].Physics of Fluids,2003,15(8):2433-2436.
    [15]AKILLI H,SAHIN B,TUMEN N F.Suppression of vortex shedding of circular cylinder in shallow water by a splitter plate[J].Flow Measurement and Instrumentation,2005,16(4):211-219.
    [16]LEE S J,LEE S I,PARK C W.Reducing the drag on a circular cylinder by upstream installation of a small control rod[J].Fluid dynamics research,2004,34(4):233-250.
    [17]范宝春,张辉,陈志华.圆柱绕流的优化控制[J],空气动力学学报,2007,25(12):97-101.
    [18]谢杰,许劲松,郁程.圆柱绕流的流动分离控制[J].哈尔滨工程大学学报,2011,32(4):401-406.
    [19]YOON J,KIM J,CHOI H.Control of laminar vortex shedding behind a circular cylinder using tabs[J].Journal of Mechanical Science & Technology,2014,28(5):1721-1725.
    [20]周本谋,范宝春,陈志华.电磁力连续控制圆柱绕流态变化的研究[J].流体力学实验与测量,2004,18(1):10-14.
    [21]李文丰,蔡晋生,郝江南.双极性等离子体激励器圆柱绕流控制实验研究[J].实验流体力学,2013,27(3):17-22.
    [22]冯立好,王晋军,徐超军.高效合成射流激励信号的实验验证[J].实验流体力学,2008,22(1):6-10.
    [23]PLACZEK A,SIGRIST J F,HAMDOUNI A.Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number:Forced and free oscillations[J].Computers & Fluids,2009,38(1):80-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700