用户名: 密码: 验证码:
陶瓷电窑炉升温曲线数值仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Heating Curve of Ceramic Electric Kilns
  • 作者:彭晓辉
  • 英文作者:PENG Xiao-hui;School of Fine Arts,Jianghan University;
  • 关键词:陶瓷电窑炉 ; 升温 ; 曲线 ; 数值模拟
  • 英文关键词:Ceramic electric kiln;;Temperature rise;;Curve;;Numerical simulation
  • 中文刊名:JSJZ
  • 英文刊名:Computer Simulation
  • 机构:江汉大学美术学院;
  • 出版日期:2018-12-15
  • 出版单位:计算机仿真
  • 年:2018
  • 期:v.35
  • 语种:中文;
  • 页:JSJZ201812045
  • 页数:4
  • CN:12
  • ISSN:11-3724/TP
  • 分类号:207-210
摘要
陶瓷电窑炉升温曲线数值模拟方法直接影响电窑炉烧制陶瓷的温度、时间和消耗能量等过程。针对当前方法忽略了温度对烧制陶瓷的质量和能源消耗影响,导致最终获得电窑炉烧制的陶瓷不结实有裂纹等问题,提出一种基于离散坐标法的电窑炉升温曲线数值模拟方法,利用电窑炉烧制陶瓷的时间、内部径向和轴向的长度、烧制温度和密度等条件,对陶瓷电窑炉升温曲线的二维非稳态传热做离散处理并对其进行建模,进一步分析电窑炉烧制陶瓷时内部温度梯与气体密度的变化,采用瑞利数度量对烧制时产生气体的温度流动现象进行浮力诱导并对其进行计算,判断出烧制陶瓷的气体升温后是否存在流动状态,采用离散坐标法解决陶瓷电窑炉升温曲线的辐射问题,仿真结果表明,提出的方法能够提高陶瓷烧制的质量和生产率,并且能够降低陶瓷烧制产生的能耗,为今后陶瓷业的发展奠定基础,并起到重要作用。
        A numerical simulation method for temperature-rising curve of electric kiln based on discrete coordinate method was presented. The firing time of electric kiln,the internal radial length and internal axial length,the firing temperature and the density were used to disperse and model the two-dimensional unsteady state heat transfer of temperature-rise curve of ceramic electric kiln,so as to further analyze the changes of the internal temperature gradient and gas density in firing ceramics. Moreover,the Rayleigh number metric was used to perform the buoyancy guidance on the temperature flowing phenomenon of gas in firing ceramics,and then it was calculated to judge whether there was a flow state after the gas temperature rose. Finally,the discrete coordinate method was used to solve the radiation problem of temperature-rising curve of ceramic electric kiln. From simulation results,we can see that the proposed method can improve the quality and productivity of ceramic firing. Meanwhile,it can reduce the energy consumption of ceramic firing,which lays the foundation and plays an important role for future development of ceramic industry.
引文
[1]周肇秋,等.生物质气化低热值燃气窑炉燃烧温度特性[J].太阳能学报,2017,38(4):874-878.
    [2]高乾坤,等.高温窑炉气体红外辐射被动遥测[J].光学学报,2017,37(8):9-17.
    [3]肖东,等.四通道燃烧器运行参数对回转窑温度影响研究[J].热科学与技术,2017,16(3):229-235.
    [4]胡平超,等.玻璃纤维窑炉性能探究和优化[J].燕山大学学报,2017,41(4):329-334.
    [5]李小池,郭倩绮,杨巧.全氧燃烧玻璃窑炉火焰空间的数值模拟[J].硅酸盐通报,2016,35(11):3803-3807.
    [6]陈杰,李阳.全氧燃烧玻璃熔窑的数值模拟[J].建筑材料学报,2016,19(5):915-920.
    [7]姚群,等.钢铁窑炉烟尘PM2. 5控制技术与装备[J].工业安全与环保,2016,42(1):21-24.
    [8]朱永红,等.基于K均值聚类陶瓷窑炉火焰图像分割方法[J].陶瓷学报,2016,37(1):86-90.
    [9]周业明,陈乐庚.石灰窑煅烧石灰石温度优化控制研究[J].计算机仿真,2017,34(10):309-313.
    [10]李爱莲,等.基于比色法的辊道窑温度测量系统设计[J].控制工程,2017,24(1):215-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700