核壳分散相增强增韧聚丙烯机理浅析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of strengthening and toughening mechanism for polypropylene with core-shell dispersed phase
  • 作者:钱忠健 ; 王霞 ; 邱碧薇 ; 钟金池 ; 李晓燕
  • 英文作者:QIAN Zhongjian;WANG Xia;QIU Biwei;ZHONG Jinchi;LI Xiaoyan;School of Materials Science and Engineering,University of Shanghai for Science and Technology;
  • 关键词:聚丙烯 ; 增韧 ; 核壳分散相 ; 增韧机理
  • 英文关键词:polypropylene;;toughening;;core-shell dispersed phase;;toughening mechanism
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:上海理工大学材料科学与工程学院;
  • 出版日期:2019-07-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.430
  • 基金:国家自然科学基金青年资助项目(51603122);; 上海市青年科技英才扬帆计划资助项目(16YF1408200)
  • 语种:中文;
  • 页:GNCL201907006
  • 页数:6
  • CN:07
  • ISSN:50-1099/TH
  • 分类号:35-40
摘要
首先选取POE对PP进行增韧,确定PP/POE二元共混物具备较高的强度和韧性的最佳比例。然后固定PP基体比例为85%,将PP、POE和PE 3种聚合物在一定条件下共混制备一系列三元共混物。借助SEM观察,在PP基体中发现了POE包覆PE的核壳结构分散粒子。通过建立这一系列三元共混物的形态-性能(屈服强度、悬臂梁冲击强度和落锤冲击能)关系,研究PE核相的核壳分散相的增韧机理。此外,通过Wu氏理论的发展进一步比较了二元和三元共混体系的增韧机理。结果表明,单独POE增韧PP能大幅度提升韧性但是会使材料强度降低;核壳结构分散相可使三元共混物的强度和韧性达到基本平衡,在最佳条件下相比原始PP韧性提高约2.5倍。
        In this study, PP was firstly toughened by POE, and the optimum ratio of PP/POE binary blends with balanced strength and toughness was determined. Then a series of PP/POE/HDPE blends with the optimum ratio of 85% PP content were prepared and core-shell dispersed particles were observed through SEM. The toughening mechanism of core-shell dispersed particles with PE core was analyzed by studying the relationship of morphology and mechanical properties, yield strength, Izod impact strength and drop impact energy. Besides, the toughening mechanism of PP binary blend and ternary blend were explained and compared by the developed Wu's theory. The results show that the toughness of PP binary blend could be greatly improved but with the sacrifice of strength while the core-shell structure particle in the ternary blend helped to make a balance of the strength and toughness. The toughness of ternary blend under the optimal condition raised 2.5 times comparing to the raw PP.
引文
[1] Jenkins S.Polypropylene production via gas-phase process [J].Chemical Engineering,2013,120:321-329.
    [2] Du Huizhen,Yang Fei,Zhang Kunyu,et al.Study on blending system of isotactic polypropylene ionomer compatibilized polypropylene/Nylon 11 [J].Journal of Polymer Science,2018(12):1539-1547(in Chinese).杜惠真,杨飞,张坤玉,等.等规聚丙烯离聚体增容聚丙烯/尼龙11共混体系研究[J].高分子学报,2018(12):1539-1547.
    [3] Chen F,Qiu B W,Shangguan Y G,et al.Correlation between impact properties and phase structure in impact polypropylene copolymer [J].Materials & Design,2015,69:56-63.
    [4] Simsek E,Oguz O,Bilge K ,et al.Polypropylene/waste vulcanized ethylene-propylene-diene monomer (PP/WEPDM) blends prepared by high-shear thermo-kinetic mixer [J].Journal of Elastomers and Plastics,2018,50(6):537-553.
    [5] Sun D X,Yang C J,Qi X D,et al.Largely enhanced fracture toughness of the PP/EPDM blends induced by adding carbon nanofibers [J].Composites Science and Technology,2018,164:146-152.
    [6] Bai H W,Wang Y,Song B,et al.Nucleating agent induced impact fracture behavior change in PP/POE blend [J].Polymer Bulletin,2009,62(3):405-419.
    [7] Ferrer G G,Sanchez M S,Sanchez E V,et al.Blends of styrene-butadiene-styrene triblock copolymer and isotactic polypropylene:Morphology and thermo mechanical properties [J].Polymer International,2000,49(8):853-859.
    [8] Zhu Y D,Allen G C,Jones P G,et al.Dispersion characterisation of CaCO3 particles in PP/CaCO3 composites [J].Composites Part A-Applied Science and Manufacture,2014,60:38-43.
    [9] Lin Y,Chen H B,Chan C M,et al.Effects of coating amount and particle concentration on the impact toughness of polypropylene/CaCO3 nanocomposites [J].European Polymer Journal,2011,47(3):294-304.
    [10] Xu J T,Feng L X,Yang S L,et al.Separation and identification of ethylene-propylene block copolymer [J].Polymer,1997,38(17):4381-4385.
    [11] Xu Jun,Mittal V,Bates F S,et al.Toughened isotactic polypropylene:phase behavior and mechanical properties of blends with strategically designed random copolymer modifiers [J].Macromolecules,2016,49(17):6497-6506.
    [12] 陈锋.抗冲共聚聚丙烯结构—性能关系的考察及聚丙烯的抗冲改性[D].杭州:浙江大学,2015.
    [13] 邱碧薇.抗冲共聚聚丙烯分散相调控及其结构-性能关系[D].杭州:浙江大学,2015.
    [14] Qiu B W,Chen F,Shangguan Y G,et al.Simultaneously enhancing strength and toughness for impact polypropylene copolymers by regulating dispersed phase with high density polyethylene [J].RSC Advances,2014,4(103):58999-59008.
    [15] Wu S H.A generalized criterion for rubber toughening:the critical matrix ligament thickness [J].Journal of Applied Polymer Science ,1988,35(2):549-561.
    [16] Wu S H.Phase structure and adhesion in polymer blends:a criterion for rubber toughening [J].Polymer,1985,26(12):1855-1863.
    [17] Margolina A,Wu S H.Percolation model for brittle-tough transition in nylon/rubber blends [J].Polymer,1988,29(12):2170-2173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700