用户名: 密码: 验证码:
一种新型的气动爬杆机器人
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Novel Pneumatic Pole-climbing Robot
  • 作者:李晨景 ; 施虎 ; 何彬 ; 陶劲羽 ; 汪已森
  • 英文作者:LI Chen-jing;SHI Hu;HE Bin;TAO Jing-yu;WANG Yi-sen;School of Mechanical Engineering, Xi'an Jiaotong University;Shaanxi Key Laboratory of Intelligent Robots;
  • 关键词:爬杆机器人 ; 结构设计 ; 连杆机构 ; 气动系统
  • 英文关键词:pole-climbing robot;;structural design;;linkage;;pneumatic system
  • 中文刊名:YYYQ
  • 英文刊名:Chinese Hydraulics & Pneumatics
  • 机构:西安交通大学机械工程学院;陕西省智能机器人重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:液压与气动
  • 年:2019
  • 期:No.331
  • 基金:国家自然科学基金(51675400);; 陕西省自然科学基础研究计划(2018JM5016)
  • 语种:中文;
  • 页:YYYQ201903008
  • 页数:5
  • CN:03
  • ISSN:11-2059/TH
  • 分类号:41-45
摘要
随着人工智能技术的迅速发展,各类智能机器人的研究也越来越受到人们关注。面向实际生活和工业应用中存在大量爬杆作业的需求,在分析现有爬杆机器人在实际应用中所存在问题的基础上,设计了一款能够快速攀上固定高台的新型气动驱动机器人。该机器人利用双作用气缸为主要执行元件,通过设计六连杆机构对圆柱杆进行夹紧,通过气缸提升实现机器人的爬杆动作,然后通过摩擦轮带动机器人旋转上台进行工作。首先对机器人进行了结构设计和建模,再通过COMSOL软件分析主要零件的力学性能,并在AMESim软件中完成提升和夹紧机构的运动仿真。分析结果表明,该气动爬杆机器人能够满足快速爬杆的要求。
        With the rapid development of artificial intelligence technology, people have got increasingly noticed in the research of all kinds of intelligent robot. In this paper, a new type of pneumatic drive robot which can quickly climb up the fixed platform is designed based on the analysis of the problems existing in the practical application of the current climbing-pole robot. The double acting cylinder is used as the main actuator, and the six-link mechanism is designed to clamp the cylindrical rod. Through the cylinder lifting movement, the robot can finish the climbing pole movement and with the friction wheel, it can be driven to rotate on stage. In this paper, the structure of the robot is first designed and modeled; then the mechanical properties of the main parts are analyzed by COMSOL software; and the motion simulation of lifting and clamping mechanism is completed in the AMESim software; finally, the analysis result that the pneumatic climbing robot can meet the requirements of fast climbing pole is concluded.
引文
[1] ELKMANN N, FELSCH T, SACK M, et al. Modular Clim-bing Robot for Service-sector Applications [J]. Industrial Robot, 1999,26(6):460-465.
    [2] AKINFIEV T, ARMADA M, PRIETO M, et al. Concerning a Technique for Increasing Stability of Climbing Robots [J]. Journal of Intelligent & Robotic Systems, 2000,27(1-2):195-209.
    [3] 陈明森.爬杆机器人运动原理及动力学研究[D].武汉:武汉理工大学,2009. CHEN Mingsen. Study on Movement Principle and Dynamics of Climbing Robot [D]. Wuhan: Wuhan University of Technology, 2009.
    [4] 江励,管贻生,周雪峰,等.双爪式爬杆机器人的夹持性能分析[J].机械工程学报,2016,52(3):34-40. JIANG Li. GUAN Yisheng, ZHOU Xuefeng, et al. Analysis of Gripping Performance of Two-claw Climbing Pole Robot [J]. Journal of Mechanical Engineering, 2016,52(3):34-40.
    [5] 徐生,张立彬,杨庆华,等.气动蠕动爬杆机器人[J].机械工程师,2004,(3):36-38. XU Sheng, ZHANG Libin, YANG Qinghua, et al. Pneumatic Creep Climbing Robot [J]. Mechanical Engineer, 2004,(3):36-38.
    [6] 程光明,朱志伟,孙姚飞,等.仿尺蠖步态的爬杆机器人的动态仿真研究[J].世界科技研究与发展,2009,31(4):635-637,685. CHENG Guangming, ZHU Zhiwei, SUN Yaofei, et al. Dynamic Simulation Research of Climbing Robot Based on Iridium and Gait [J]. World Scitech Research & Development, 2009,31(4):635-637,685.
    [7] 王才东,范国锋,王新杰,等.一种自锁式爬杆机器人的设计与分析[J].机械传动,2015,39(10):60-63. WANG Caidong, FAN Guofeng, WANG Xinjie, et al. Design and Analysis of a Self-locking Climbing Robot [J]. Journal of Mechanical Transmission, 2015,39(10):60-63.
    [8] ZHANG Junhui, CHAO Qun, XU Bing. Analysis of Cylin-der Block Tilting Inertia Moment and Its Effect on the Performance of High-speed Electro-hydrostatic Actuator Pump of Aircraft [J]. Chinese Journal of Aeronautics, 2018,31(1):169-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700