用户名: 密码: 验证码:
感应耦合能量传输系统中双边LCC谐振腔恒流和恒压模式的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Constant Current and Constant Voltage Outputs for Double-sided LCC Resonant Tank in Inductively Coupled Power Transfer System
  • 作者:陆江华 ; 朱国荣 ; 黎文静 ; 李博 ; 姜晶
  • 英文作者:LU Jianghua;ZHU Guorong;LI Wenjing;LI Bo;JIANG Jing;School of Automation, Wuhan University of Technology;Department of Electrical and Computer Engineering, Western University;
  • 关键词:恒流 ; 恒压 ; 感应耦合能量传输 ; 电动汽车 ; 零相位角 ; 零电压开关
  • 英文关键词:constant current;;constant voltage;;inductively coupled power transfer;;electric vehicle(EV);;zero phase angle(ZPA);;zero voltage switching(ZVS)
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:武汉理工大学自动化学院;韦仕敦大学电气与计算机工程系;
  • 出版日期:2018-03-21 16:19
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.620
  • 基金:国家自然科学基金项目(51777146)~~
  • 语种:中文;
  • 页:ZGDC201909027
  • 页数:11
  • CN:09
  • ISSN:11-2107/TM
  • 分类号:282-292
摘要
感应耦合能量传输(inductively coupled power transfer,ICPT)系统中补偿网络能够改善系统特性,目前针对谐振补偿网络的输出电流和电压特性没有一种简单易行的分析模型。首先分析了LC电路、??型电路和T型电路实现与负载无关的恒流或恒压输出的谐振条件,并针对高阶无源谐振网络提出一种建模方法,通过将谐振网络等效成2阶LC网络和多级3阶???型电路或多级3阶T型电路的串联,研究其恒流或恒压输出的物理机理。ICPT系统中双边LCC谐振腔实质上是一个9阶谐振网络,基于所提建模方法,分析双边LCC谐振腔输出电流和电压特性。此外,提出仅切换一次系统工作频率便可以实现系统先恒流再恒压输出的方法,且恒流和恒压模式下系统工作频率均满足SAEJ2954标准要求,分别能实现谐振腔输入电压、电流之间的零相角和原边逆变器MOSFETs的零电压开通。搭建3.3kW电动汽车感应耦合能量传输系统的Matlab仿真平台和实验样机,验证理论分析的正确性和可行性。恒流和恒压模式下实验样机谐振腔的效率分别为92.1%和89.7%。
        Compensation networks can be used to improve the system characteristics of an inductively coupled power transfer(ICPT) system, however, there is no a simple method to analyze its output current and voltage. This paper investigated the resonant conditions of the LC circuit,?-circuit, and T-circuit, and proposed a modeling method for high-order resonant network to achieve load-independent constant current(CC) or constant voltage(CV) output.Higher-order resonant networks are equivalent to series connection of LC network and multi-stages ?-circuit or multi-stages T-circuit. Double-sided LCC resonant tank circuit in ICPT system is actually a ninth-order resonant network.Based on the proposed modeling method, output characteristics of the double-sided LCC resonant tank circuit were analyzed.And a variable frequency control method for inductive electric vehicle(EV) charging was proposed to realize constant current-constant voltage charging profile. In CC and CV modes, the operating frequencies are compatible with the SAE J2954 standard and the zero phase angle(ZPA) between the input voltage and current of resonant tank circuit and zero voltage switching(ZVS) for all primary side MOSFETs of the primary side DC/AC converter can be achieved, respectively.The Matlab simulation and experimental prototype of ICPTs with up to 3.3 kW transfer power for EV charging application were designed and developed to validate the analysis. The efficiencies of the double-sided LCC resonant tank circuit are92.1% and 89.7% in CC and CV modes, respectively.
引文
[1]程时杰,陈小良,王军华,等.无线输电关键技术及其应用[J].电工技术学报,2015,30(19):68-84.Cheng Shijie,Chen Xiaoliang,Wang Junhua,et al.Key technologies and applications of wireless power transmission[J].Transactions of China Electrotechnical Society,2015,30(19):68-84(in Chinese).
    [2]赵争鸣,张艺明,陈凯楠.磁耦合谐振式无线电能传输技术新进展[J].中国电机工程学报,2013,33(3):1-13.Zhao Zhengming,Zhang Yiming,Chen Kainan.New progress of magnetically-coupled resonant wireless power transfer technology[J].Proceedings of the CSEE,2013,33(3):1-13(in Chinese).
    [3]Li Siqi,Mi C C.Wireless power transfer for electric vehicle applications[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2015,3(1):4-17.
    [4]Li Wenhan,Zhao Han,Deng Junjun,et al.Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers[J].IEEETransactions on Vehicular Technology,2016,65(6):4429-4439.
    [5]宋凯,朱春波,李阳,等.用于电动汽车动态供电的多初级绕组并联无线电能传输技术[J].中国电机工程学报,2015,35(17):4445-4453.Song Kai,Zhu Chunbo,Li Yang,et al.Wireless power transfer technology for electric vehicle dynamic charging using multi-parallel primary coils[J].Proceedings of the CSEE,2015,35(17):4445-4453(in Chinese).
    [6]Li Qifan,Liang Y C.An inductive power transfer system with a high-Q resonant tank for mobile device charging[J].IEEE Transactions on Power Electronics,2015,30(11):6203-6212.
    [7]张巍.人体植入式非接触电能传输系统的研究[D].南京:南京航天航空大学,2010.Zhang Wei.Research on transcutaneous energy transmission for implanted devices[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010(in Chinese).
    [8]孙跃,夏晨阳,戴欣,等.感应耦合电能传输系统互感耦合参数的分析与优化[J].中国电机工程学报,2010,30(33):44-50.Sun Yue,Xia Chenyang,Dai Xin,et al.Analysis and optimization of mutual inductance for inductively coupled power transfer system[J].Proceedings of the CSEE,2010,30(33):44-50(in Chinese).
    [9]Wang C S,Stielau O H,Covic G A.Design considerations for a contactless electric vehicle battery charger[J].IEEETransactions on Industrial Electronics,2005,52(5):1308-1314.
    [10]周雯琪,马皓,何湘宁.感应耦合电能传输系统不同补偿拓扑的研究[J].电工技术学报,2009,24(1):133-139.Zhou Wenqi,Ma Hao,He Xiangning.Investigation on different compensation topologies in inductively coupled power transfer system[J].Transactions of China Electrotechnical Society,2009,24(1):133-139(in Chinese).
    [11]Zhang Wei,Wong S C,Tse C K,et al.Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems[J].IEEE Transactions on Power Electronics,2014,29(1):191-200.
    [12]翟渊,孙跃,戴欣,等.磁共振模式无线电能传输系统建模与分析[J].中国电机工程学报,2012,32(12):155-160.Zhai Yuan,Sun Yue,Dai Xin,et al.Modeling and analysis of magnetic resonance wireless power transmission systems[J].Proceeding of the CSEE,2012,32(12):155-160(in Chinese).
    [13]Borage M,Tiwari S,Kotaiah S.Analysis and design of an LCL-T resonant converter as a constant-current power supply[J].IEEE Transactions on Industrial Electronics,2005,52(6):1547-1554.
    [14]Esteban B,Sid-Ahmed M,Kar N C.A comparative study of power supply architectures in wireless EV charging systems[J].IEEE Transactions on Power Electronics,2015,30(11):6408-6222.
    [15]Li Siqi,Li Weihan,Deng Junjun,et al.A double-sided LCC compensation network and its tuning method for wireless power transfer[J].IEEE Transactions on Vehicular Technology,2015,64(6):2261-2273.
    [16]董纪清,杨上苹,黄天祥,等.用于磁耦合谐振式无线电能传输系统的新型恒流补偿网络[J].中国电机工程学报,2015,35(17):4468-4476.Dong Jiqing,Yang Shangping,Huang Tianxiang,et al.A novel constant current compensation network for magnetically-coupled resonant wireless power transfer system[J].Proceedings of the CSEE,2015,35(17):4468-4476(in Chinese).
    [17]陈希有,伍红霞,牟宪民,等电流型电场耦合无线电能传输技术[J].中国电机工程学报,2015,35(9):2279-2286.Chen Xiyou,Wu Hongxia,Mu Xianmin,et al.The current-type capacitively coupled wireless power transfer technology[J].Proceedings of the CSEE,2015,35(9):2279-2286(in Chinese).
    [18]Gati E,Kampitsis G,Manias S.Variable frequency controller for inductive power transfer in dynamic conditions[J].IEEE Transactions on Power Electronics,2017,32(2):1684-1696.
    [19]Zhang Wei,Mi C C.Compensation topologies of high-power wireless power transfer systems[J].IEEETransactions on Vehicular Technology,2016,65(6):4768-4778.
    [20]Vu Van-Binh,Tran Duc-Hung,Choi Woojin.Implementation of the constant current and constant voltage charge of inductive power transfer systems with the double-sided LCC compensation topology for electric vehicle battery charge applications[J].IEEE Transactions on Power Electronics,2018,33(9):7398-7410.
    [21]Vu V B,Doan V T,Pham V L,et al.A new method to implement the constant current-constant voltage charge of the inductive power transfer system for electric vehicle applications[C]//2016 IEEE Transportation Electrification Conference and Expo,Asia-Pacific(ITEC Asia-Pacific),2016:449-453.
    [22]Lu Jianghua,Zhu Guorong,Li Peng,et al.Research on seamless transfer from CC to CV modes for IPT EVcharging system based on double-sided lcc compensation network[C]//2016 IEEE Energy Conversion Congress and Exposition(ECCE),2017:1-6.
    [23]张洪砚.基于电容切换的ICPT系统负载及互感识别方法[D].重庆:重庆大学,2015.Zhang Hongyan.Load and mutual inductance identification method of ICPT system based on switching capacitors[D].Chongqing:Chongqing University,2015(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700