用户名: 密码: 验证码:
超磁致伸缩电静液作动器输出流量影响因素分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analyzing Factors of Influence on Performance of Giant Magnetostrictive Electro-hydrostatic Actuator
  • 作者:王振宇 ; 朱玉川 ; 李宇阳 ; 罗樟
  • 英文作者:Wang Zhenyu;Zhu Yuchuan;Li Yuyang;Luo Zhang;College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics;
  • 关键词:超磁致伸缩电静液作动器 ; 影响因素 ; 输出流量 ; 选取准则
  • 英文关键词:actuators;;influence factor;;output performance;;selection criteria
  • 中文刊名:JXKX
  • 英文刊名:Mechanical Science and Technology for Aerospace Engineering
  • 机构:南京航空航天大学机电学院;
  • 出版日期:2018-10-29 16:40
  • 出版单位:机械科学与技术
  • 年:2019
  • 期:v.38;No.290
  • 基金:国家自然科学基金项目(51575258);; 江苏高校“青蓝工程”项目;; 上海航天科技创新基金资助项目(SAST2016081);; 南京航空航天大学研究生创新基地(实验室)开放基金项目(kfjj20170514);; 2017年南京航空航天大学研究生教育教学改革研究项目资助
  • 语种:中文;
  • 页:JXKX201904014
  • 页数:5
  • CN:04
  • ISSN:61-1114/TH
  • 分类号:96-100
摘要
首先对作动器的工作原理进行分析,随后建立了作动器系统的数学模型,通过仿真分析得到超磁致伸缩执行器输出位移与驱动频率的关系,泵腔内活塞直径、泵腔高度与作动器输出流量的关系以及系统偏压与作动器输出流量的关系。对超磁致伸缩执行器进行实验和仿真对比,验证了仿真模型的正确性。对影响超磁致伸缩电静液作动器输出流量的几种因素进行总结,给出了这些影响因素在超磁致伸缩作动器设计与优化中的选取准则。
        First, this paper analyzes the working principle of a giant magnetostrictive actuator, and then establishes its mathematical model. The simulation analysis produces the relationships among the output displacement of the actuator and its driving frequency, its piston diameter, its pump cavity height and output flow rate, its system bias pressure and output flow rate. Finally, the experimental data and simulation results on the actuator are compared to verify the accuracy of the simulation model. Several factors influencing the performance of the electro-hydrostatic actuator are presented and the selection criteria for the influence factors are given.
引文
[1] 杨旭磊,朱玉川,纪良,等.超磁致伸缩电静液作动器的试验研究与特性分析[J].航空学报,2016,37(9):2839-2850Yang X L, Zhu Y C, Ji L, et al. Experimental investigation and characteristic analysis of a giant magnetostrictive materials-based electro-hydrostatic actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016,37(9):2839-2850 (in Chinese)
    [2] Liu X H, Zhang H, Gao X L, et al. Design and simulation analysis of giant magnetostrictive actuator[J]. Materials Technology, 2015,30(3):155-158
    [3] Luo M Z, Li W J, Wang J M, et al. Development of a novel guided wave generation system using a giant magnetostrictive actuator for nondestructive evaluation[J]. Sensors, 2018,18(3):779
    [4] 李跃松,朱玉川,吴洪涛,等.超磁致伸缩伺服阀用电-机转换器传热及热误差分析[J].农业机械学报,2015,46(2):343-350Li Y S, Zhu Y C, Wu H T, et al. Modeling of heat transfer and displacement error from heat of giant magnetostrictive actuator applied in servovalve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(2):343-350 (in Chinese)
    [5] Chaudhuri A, Wereley N. Compact hybrid electrohydraulic actuators using smart materials: A review[J]. Journal of Intelligent Material Systems and Structures, 2012,23(6):597-634
    [6] Li Y S, Zhu Y C, Wu H T, et al. Modeling and inverse compensation for giant magnetostrictive transducer applied in smart material electrohydrostatic actuator[J]. Journal of Intelligent Material Systems and Structures, 2014,25(3):378-388
    [7] Yang X L, Zhu Y C, Zhu Y K. Characteristic investigations on magnetic field and fluid field of a giant magnetostrictive material-based electro-hydrostatic actuator[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018,232(5):847-860
    [8] 杨旭磊,朱玉川,费尚书,等.超磁致伸缩电静液作动器磁场分析与优化[J].航空动力学报,2016,31(9):2210-2217Yang X L, Zhu Y C, Fei S S, et al. Magnetic field analysis and optimization of giant magnetostrictive electro-hydrostatic actuator[J]. Journal of Aerospace Power, 2016,31(9):2210-2217 (in Chinese)
    [9] 纪良,朱玉川,杨旭磊,等.超磁致伸缩执行器热损耗模型与实验[J].航空动力学报,2017,32(5):1066-1073Ji L, Zhu Y C, Yang X L, et al. Theoretical analysis and experiment of power loss in giant magnetostrictive actuator[J]. Journal of Aerospace Power, 2017,32(5):1066-1073 (in Chinese)
    [10] Chaudhuri A, Yoo J H, Wereley N M. Design, test and model of a hybrid magnetostrictive hydraulic actuator[J]. Smart Materials and Structures, 2009,18(8):085019
    [11] 郭雪涛,王修勇,孟庆甲.超磁化条件下超磁致伸缩作动器迟滞现象研究[J].湖南工程学院学报,2013,23(4):62-67Guo X T, Wang X Y, Meng Q J. Research on hysteresis of giant magnetostrictive actuator under over magnetised[J]. Journal of Hunan Institute of Engineering, 2013,23(4):62-67 (in Chinese)
    [12] 张旭辉,刘永光,付永领.磁致伸缩作动器结构优化设计[J].压电与声光,2009,31(3):377-380Zhang X H, Liu Y G, Fu Y L. Optimum design of the magnetostrictive actuator[J]. Piezoelectrics & Acoustooptics, 2009,31(3):377-380 (in Chinese)
    [13] Guo Y Z, Zhu Y C, Li Y Y, et al. Model and experimental research of a hybrid self-contained electro-hydrostatic actuator using piezoelectric stack[J]. Journal of Intelligent Material Systems and Structures, 2018,29(7):1348-1359
    [14] Zhu Y C, Li Y S. A hysteresis nonlinear model of giant magnetostrictive transducer[J]. Journal of Intelligent Material Systems and Structures, 2015,26(16):2242-2255
    [15] Zhu Y C, Yang X L, Wereley N M. Research on hysteresis loop considering the prestress effect and electrical input dynamics for a giant magnetostrictive actuator[J]. Smart Materials and Structures, 2016,25(8):085030
    [16] Jiles D C, Thoelke J B, Devine M K. Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis[J]. IEEE Transactions on Magnetics, 1992,28(1):27-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700