用户名: 密码: 验证码:
根际促生菌提高水稻对非生物胁迫耐受性的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in plant growth promoting rhizobacteria to enhance abiotic stress tolerance in rice
  • 作者:韩笑 ; 卢磊
  • 英文作者:HAN Xiao;LU Lei;School of Life Sciences,Northeast Forestry University;
  • 关键词:根际促生菌 ; 水稻 ; 非生物胁迫
  • 英文关键词:plant growth promoting rhizobacteira;;rice;;abiotic stress
  • 中文刊名:SMKX
  • 英文刊名:Chinese Bulletin of Life Sciences
  • 机构:东北林业大学生命科学学院;
  • 出版日期:2019-03-15
  • 出版单位:生命科学
  • 年:2019
  • 期:v.31;No.240
  • 基金:中央高校基本科研业务费专项基金项目(2572017CA22)
  • 语种:中文;
  • 页:SMKX201903012
  • 页数:7
  • CN:03
  • ISSN:31-1600/Q
  • 分类号:77-83
摘要
随着极端气候的不断出现和环境污染的日益严重,水稻在种植过程中受到了多种非生物胁迫(如干旱、重金属和高盐等),导致生长受到抑制,产量降低。近些年,减缓胁迫影响的技术受到越来越多的关注,根际促生菌(PGPR)作为从根际土壤中筛选出的微生物,可有效降低非生物胁迫对水稻生长的影响。它们不仅能够通过自身的生理特性阻碍重金属迁移,减轻重金属对水稻的毒害作用,还能通过产1-氨基环丙烷-1-羧酸脱氨酶、嗜铁素、植物激素或固氮解磷解钾作用,使水稻在形态或生理等方面发生改变,从而提高对重金属、干旱、高盐等非生物胁迫的耐性,促进其生长。该文介绍了PGPR及其种类,并对非生物胁迫下PGPR提高水稻耐受性的研究进展进行总结,为进一步研究和利用PGPR缓解非生物胁迫对水稻的影响提供参考。
        With the intensified emergence of extreme climate and increasing environmental pollution, rice can be subjected to a variety of abiotic stresses(such as drought, heavy metals and high salinity) during planting, resulting in growth inhibition and reduced yield. In recent years, technologies of alleviating the adverse effects of stress have received more and more attention. The plant growth promoting rhizobacteria(PGPR), which are isolated from the rhizosphere soil, can efficiently decrease the adverse effects of abiotic stresses on rice growth. They can not only hinder the migration of heavy metals through its own physiological characteristics, but also alleviate the toxic effects of heavy metals on rice. In addition, they are able to influence the morphological and physiological features of rice through the production of 1-aminocyclopropane-1-carboxylic acid(ACC) deaminase, ferricin and plant hormones or nitrogen fixation, phosphate and potassium solubilization. These direct or indirect effects enhance the tolerance of rice towards abiotic stresses such as heavy metals, drought and high salinity, and thereby promote the rice growth. In this article, we introduce the PGPR as well as their species, and review the applications of PGPR in improving rice tolerance under abiotic stress, which may provide some references for further research and application of PGPR in this field.
引文
[1]Pandey A, Yarzabal LA. Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Appl Microbiol Biotechnol, 2019, 103:643-57
    [2]杨珍,戴传超,王兴祥,等.作物土传真菌病害发生的根际微生物机制研究进展.土壤学报, 2019, 56:12-22
    [3]康业斌,田艳艳,丁玥琪,等.烟草根际微生物多样性研究进展[C]//河南省植物保护学会、河南省昆虫学会、河南省植物病理学会会员代表大会暨学术讨论会.湖南省昆虫学会, 2017:7
    [4]张蕾,徐慧敏.根际微生物与植物再植病的发生发展关系.微生物学报, 2016, 56:1234-41
    [5]Oldroyd GE, Murray JD, Poole PS, et al. The rules of engagement in the legume-rhizobial symbiosis. Annu Rew Genet, 2011, 45:119-44
    [6]Liu H, Zhang C, Yang J, et al. Hormone modulation of legume-rhizobial symbiosis. J Integr Plant Biol, 2018, 60:632-48
    [7]Wang W, Shi J, Xie Q, et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant,2017, 10:1147-58
    [8]Parniske M. Arbuscular mycorrhiza:the mother of plant root endosymbioses. Nat Rev Microbiol, 2008, 6:763-75
    [9]Glick BR. Plant growth-promoting bacteria:mechanisms and applications. Scientifica, 2012, 2012:963401
    [10]DiSalvoLP,CellucciGC,CarlinoME,etal.Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize(Zea mays L.)grain yield and modified rhizosphere microbial communities. Appl Soil Ecol, 2018, 126:113-20
    [11]Backer R, Rokem JS, Ilangumaran G, et al. Plant growthpromoting rhizobacteria:context, mechanisms of action,and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci, 2018, 9:1473
    [12]TiwariS,PrasadV,ChauhanPS,etal.Bacillus amyloliquefaciensconferstolerancetovariousabiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci, 2017, 8:1510
    [13]Forni C, Duca D, Glick BR. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria.Plant Soil, 2017, 410:335-56
    [14]EtesamiH,MaheshwariDK.Useofplantgrowth promoting rhizobacteria(PGPRs)with multiple plant growth promoting traits in stress agriculture:action mechanisms and future prospects. Ecotoxicol Environ Saf,2018, 156:225-46
    [15]Bakhshandeh E, Pirdashti H, Gilani Z. Application of mathematical models to describe rice growth and nutrients uptake in the presence of plant growth promoting microorganisms. Appl Soil Ecol, 2018, 124:171-84
    [16]Souza RD, Schoenfeld R, Passaglia LMP. Bacterial inoculants for rice:effects on nutrient uptake and growth promotion. Archiv Agron Soil Sci, 2015, 62:561-9
    [17]Kecskés ML, Choudhury ATMA, Casteriano AV, et al.Effects of bacterial inoculant biofertilizers on growth,yield and nutrition of rice in Australia. J Plant Nutr, 2015,39:377-88
    [18]Paul D, Lade H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils:a review. Agron Sustain Dev, 2014, 34:737-52
    [19]Vejan P, Abdullah R, Khadiran T, et al. Role of plant growthpromotingrhizobacteriainagricultural sustainability--A review. Molecules, 2016, 21:573
    [20]李交昆,余黄,曾伟民,等.根际促生菌强化植物修复重金属污染土壤的研究进展.生命科学, 2017, 29:434-42
    [21]Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol, 2017, 33:197
    [22]MahantyT,BhattacharjeeS,GoswamiM,etal.Biofertilizers:a potential approach for sustainable agriculture development. Environm Sci Pollut Res Int,2017, 24:3315-35
    [23]辛树权,王贵,高扬.植物生长促生菌对盐胁迫下水稻种子萌发及幼苗生长的影响.湖北农业科学, 2012, 51:490-2, 6
    [24]Kanawapee N, Sanitchon J, Srihaban P, et al. Physiological changes during development of rice(Oryza sativa L.)varieties differing in salt tolerance under saline field condition. Plant Soil, 2013, 370:89-101
    [25]ShrivastavaP,KumarR.Soilsalinity:aserious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci,2015, 22:123-31
    [26]NautiyalCS,SrivastavaS,ChauhanPS,etal.Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem, 2013, 66:1-9
    [27]Mitra S, Pramanik K, Ghosh PK, et al. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Microbiol Res, 2018, 210:12-25
    [28]Chmielowska-B?k J, Lefèvre I, Lutts S, et al. Effect of cobalt chloride on soybean seedlings subjected to cadmium stress. Acta Soc Bot Pol, 2014, 83:201-7
    [29]Han Y, Wang R, Yang Z, et al. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol, 2015, 25:1119-28
    [30]Mitra S, Pramanik K, Sarkar A, et al. Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. Ecotoxicol Environ Saf, 2018, 156:183-96
    [31]PramanikK,MitraS,Sarkar A,etal. Alleviationof phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J Hazard Mater, 2018, 351:317-29
    [32]Singh N, Marwa N, Mishra SK, et al. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L.. Ecotoxicol Environ Saf, 2016, 125:25-34
    [33]王立,安广楠,马放,等. AMF对镉污染条件下水稻抗逆性及根际固定性的影响.农业环境科学学报, 2014, 33:1882-9
    [34]Singh N, Srivastava S, Rathaur S, et al. Assessing the bioremediation potential of arsenic tolerant bacterial strains in rice rhizosphere interface. J Environl Sci, 2016,48:112-9
    [35]韩娟英,张宁,舒小丽,等.水稻对重金属的吸收特性及其影响因素.中国稻米, 2018, 24:44-8, 54
    [36]MallickI,BhattacharyyaC,MukherjiS,etal.Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria(PGPB)isolated from mangrove rhizosphere:a step towards arsenic rhizoremediation. Sci Total Environ,2018, 610-11:1239-50
    [37]Pramanik K, Mitra S, Sarkar A, et al. Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environm Sci Pollut Res Int, 2017, 24:24419-37
    [38]朱建峰,崔振荣,吴春红,等.我国盐碱地绿化研究进展与展望.世界林业研究, 2018, 31:70-5
    [39]Abbas G, Saqib M, Akhtar J, et al. Physiological and biochemical characterization of Acacia stenophylla and Acaciaalbida exposed to salinity under hydroponic conditions. Canadian JForest Res, 2017, 47:1293-301
    [40]NumanM,BashirS,Khan Y,etal.Plantgrowth promoting bacteria as an alternative strategy for salt tolerance in plants:a review. Microbiol Res, 2018, 209:21-32
    [41]Redman RS, Kim YO, Woodward CJ, et al. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis:a strategy for mitigating impacts of climate change. PLoS One, 2011, 6:e14823
    [42]Kumar K, Amaresan N, Madhuri K. Alleviation of the adverse effect of salinity stress by inoculation of plant growth promoting rhizobacteria isolated from hot humid tropical climate. Ecol Eng, 2017, 102:361-6
    [43]BalHB,NayakL,DasS,etal.IsolationofACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil, 2013, 366:93-105
    [44]Shah G, Jan M, Afreen M, et al. Halophilic bacteria mediated phytoremediation of salt-affected soils cultivated with rice. J Geochem Explor, 2017, 174:59-65
    [45]Ashrafuzzaman M, Hossen FA, Razi Ismail M, et al.Efficiency of plant growth-promoting rhizobacteria(PGPR)for the enhancement of rice growth. Biotechnology,2009, 8:1247-52
    [46]Khan A, Sirajuddin, Zhao XQ, et al. Bacillus pumilus enhances tolerance in rice(Oryza sativa L.)to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ Expl Bot, 2016, 124:120-9
    [47]Liu Y, Cao L, Tan H, et al. Surface display of ACC deaminase on endophytic Enterobacteriaceae strains to increase saline resistance of host rice sprouts by regulating plant ethylene synthesis. Microb Cell Fact, 2017, 16:214
    [48]Shahzad R, Khan AL, Bilal S, et al. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot, 2017,136:68-77
    [49]Nakbanpote W, Panitlurtumpai N, Sangdee A, et al. Salttolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil:identification and effect on rice under saline conditions. J Plant Interact, 2013, 9:379-87
    [50]Sarkar A,GhoshPK,PramanikK,etal. Ahalotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol, 2017, 169:20-32
    [51]Vurukonda SS, Vardharajula S, Shrivastava M, et al.Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res, 2016,184:13-24
    [52]Lasudee K, Tokuyama S, Lumyong S, et al. Actinobacteria associated with arbuscular mycorrhizal funneliformis mosseae spores, taxonomic characterization and their beneficial traits to plants:evidence obtained from mung bean(Vigna radiata)and thai Jasmine Rice(Oryza sativa).Front Microbiol, 2018, 9:1247
    [53]Yogendra SG, Singh US, Sharma AK. Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice(Oryza sativa L.). African J Biotechnol, 2015, 14:764-73
    [54]Cassán F, Maiale S, Masciarelli O, et al. Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation.Eur J Soil Biol, 2009, 45:12-9
    [55]Kakar KU, Ren XL, Nawaz Z, et al. A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice(Oryza sativa L.). Plant Biol, 2016, 18:471-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700