用户名: 密码: 验证码:
异向混合光栅薄膜太阳能电池光吸收分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optical Absorption of Anisotropy Hybrid Grating Thin Film Solar Cell
  • 作者:陈科 ; 王晴晴 ; 郑红梅 ; 汪园园 ; 吴睿
  • 英文作者:CHEN Ke;WANG Qing-qing;ZHENG Hong-mei;WANG Yuan-yuan;WU Rui;Digital Design and Manufacture Key Laboratory of Anhui Province,College of Mechanical Engineering,Hefei University of Technology;
  • 关键词:光电子学 ; 光吸收 ; 时域有限差分法 ; 异向混和光栅 ; 薄膜太阳能电池 ; 光生电流密度
  • 英文关键词:Optoelectronics;;Light absorption;;Finite difference time domain method;;Anisotropy hybrid gratings;;Thin film solar cells;;Photocurrent density
  • 中文刊名:GZXB
  • 英文刊名:Acta Photonica Sinica
  • 机构:合肥工业大学机械工程学院安徽省数字化设计与制造重点实验室;
  • 出版日期:2019-03-11 09:36
  • 出版单位:光子学报
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金重点项目(No.51435003)~~
  • 语种:中文;
  • 页:GZXB201903010
  • 页数:9
  • CN:03
  • ISSN:61-1235/O4
  • 分类号:72-80
摘要
为了分析混合光栅对硅薄膜太阳能电池光吸收的影响,在硅层厚度等效一致的条件下,设计了单一形状、同向和异向混合形状光栅单晶硅太阳能电池结构.利用时域有限差分法分别优化计算了各种混合光栅的最佳尺寸、光生电流密度和光吸收效率,发现异向混合结构的Ag光栅比其他结构具有更好的光吸收能力.通过电磁场强度分布图分析了混合光栅结构的吸收增强机理,并针对异向混合光栅,计算了不同光栅数量组成结构的光生电流密度.同时,利用光吸收增强因子定量分析得出一个三角凸型和一个抛物线凹槽是异向混合光栅最佳数量组合.有规律地改变这种混合光栅的宽度比和高度比,计算光生电流密度.结果发现当宽度比为1∶1,高度比在一个小范围内(0.67~1.86)波动时,这种异向混合结构比平板太阳能电池的光生电流密度提高了62.9%.研究结果可为薄膜太阳能电池的结构和参数设计提供参考.
        To analyze the impact of hybrid gratings on silicon thin film solar cells,the crystalline silicon solar cells with mono shape of grating,syntropy and anisotropy shapes of hybrid grating were designed.And the thickness of silicon layer was unified.By finite-difference time-domain method,the optimal sizes,photocurrent densities and optical absorption of hybrid gratings were optimized,respectively.The results showed that the anisotropy hybrid grating had more optical absorption performance than other structures.Through analyzing the electromagnetic field intensities,the mechanism of optical absorption enhancement of hybrid grating structure was found.Also,the photocurrent density with different grating numbers of component structures was calculated for the anisotropy hybrid grating.Simultaneously,the optimum combination of a triangle convex and a parabola convex in anisotropy hybrid grating was quantified by the factor of absorption enhancement.By varying the ratios of width and height regularly,the photocurrent densities were calculated.Results indicated that the photocurrent density of the anisotropy hybrid structure increased by 62.9%relative to a flat solar cell when the ratio of width was set1:1 and the ratio of height ranged from 0.67 to 1.86.The study can provide a theoretical reference for the structure and parameter design of thin film solar cells.
引文
[1]ZHANG Xiu-qing,LI Yan-hong,ZHANG Chao.Research progress on solar cell[J].Materials China,2014,33(7):436-441.张秀清,李艳红,张超.太阳能电池研究进展[J].中国材料进展,2014,33(7):436-441.
    [2]ALI N,HUSSAIN A,AHMED R,et al.Advances in nanostructured thin film materials for solar cell applications[J].Renewable&Sustainable Energy Reviews,2016,59:726-737.
    [3]LEE T D,EBOG A U.A review of thin film solar cell technologies and challenges[J].Renewable&Sustainable Energy Reviews,2017,70:1286-1297.
    [4]ZHANG R Y,SHAO B,DONG J R,et al.Absorption enhancement analysis crystalline Si thin film solar cells based on broadband antireflection nanocone grating[J].Jouranl of Applied Physics,2011,110(11):113105.
    [5]LIU L,HUO Y P,ZHAO K J,et al.Broadband absorption enhancement in plasmonic thin-film solar cells with grating surface[J].Superlattices and Microstructures,2015,86:300-305.
    [6]BAI W L,GAN Q Q,BARTOLI F,et al.Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells[J].Optics Letters,2009,34(23):3725-3727.
    [7]ZENG L,HONG C,LIU J,et al.Efficiency enhancement in Si solar cells by textured photonic crystal back reflector[J].Applied Physics Letters,2006,89(11):111111.
    [8]FERRY V E,MUNDAY J N,ATWATER H A.Design considerations for plasmonic photovoltaics[J].Advanced Materials,2010,22(43):4794-4808.
    [9]FERRY V E,VERSCHUUREN M A,LI H B T,et al.Polman,Light trapping in ultrathin plasmonic solar cells[J].Optics Express,2010,18(13):A237-A245.
    [10]MENNUCCI C,MUHAMMAD M H,HAMEED M F O,et al.Broadband light trapping in nanotextured thin film photovoltaic devices[J].Applied Surface Science,2018,446:74-82.
    [11]ZHANG W,JIANG L Y,LI X Y.Broadband light harvesting enhancement with front double and back metallic gratings in thin film solar cells[J].Optics Communications,2014,317:83-87.
    [12]WU J.Absorption enhancement in thin-film solar cells based on periodically chirped structure[J].Solar Energy,2018,165:85-89.
    [13]CHEN K,WU R,ZHENG H M,et al.Photovoltaic absorber with different grating profiles in the near-infrared region[J].Journal of the Optical Society of America A-Optics Image Science and Vision,2017,34(11):2000-2006.
    [14]ZHANG X L,SONG J F,FENG J,et al.Spectral engineering by flexible tunings of optical Tamm states and FabryPerot cavity resonance[J].Optics Letters,2013,38(21):4382-4385.
    [15]ROTHEMUND R,UMUNDUM T,MEINHARDT G,et al.Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings[J].Progress in Photovoltaics,2013,21(4):747-753.
    [16]TAN H R,SANTBERGEN R,SMETS A H M,et al.Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles[J].Nano Letters,2012,12(8):4070-4076.
    [17]MUNDAY J N,ATWATER H A.Large integrated absorption enhancement in plamonic solar cells by combining metallic gratings and antireflection coatings[J].Nano Letters,2011,11(6):2195-2201.
    [18]SHI W B,FAN R H,ZHANG K,et al.Broadband light trapping and absorption of thin-film silicon sandwiched by trapezoidal surface and silver grating[J].Journal of Applied Physics,2015,117(6):065104.Nano Letters,2011,11(6):2195-2201.
    [19]SHI Y P,WANG X D,LIU W,et al.Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle grating[J].Physica Status Solidi A-Applications and Materials Science,2015,212(2):312-316.
    [20]THOUTI E,SHARMA A K,KOMARALA V K.Role of textured silicon surface in plasmonic light trapping for solar cells:the effect of pyramids width and height[J].IEEE Journal of Photovoltaics,2016,6(6):1403-1406.
    [21]FANG X,ZHAO C Y.Grading absorption and enhancement in silicon nanpwire arrays with thin blocks[J].Journal of Quantitative Spectroscopy&Radiative Transfer,2017,194:7-16.
    [22]DENG C,TAN X Y,JIANG L H,et al.Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications[J].Optics Communications,2018,407:199-203.
    [23]DE ZOYSA M,ISHIZAKI K,TANAKA Y,et al.Enhanced efficiency of ultrathin(similar to 500 nm)-film microcrystalline silicon photonic crtstal solar cells[J].Applied Physics Express,2017,10(1):012302.
    [24]BAEK S W,LEE G S,PARK J G.Effect of nanohole structure on pyramid textured surface on photo-voltaic performance of silicon solar cell[J].Journal of Applied Physics,2014,116(8):084511.
    [25]FERRY V E,POLMAN A,ATWATER H A.Modeling light trapping in nanostructured solar cells[J].Acs Nano,2011,5(12):10055-10064.
    [26]FIROOZI A,MOHAMMADI A.Design of plasmonics backcontact nanogratings for broadband and polarizationinsensitive absorption enhancement in thin-film solar cell[J].International Journal of Modern Physics B,2015,29:17.
    [27]CHEN K,WANG Y Y,ZHENG H M,et al.Optical Absorption of thin film solar cells with hybrid arranged bottom grating[J].Plasmonics,2018,13(3):815-823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700