用户名: 密码: 验证码:
拉锥Ge_(15)Sb_(20)Se_(65)硫系玻璃光纤对乙醇溶液检测的光谱分析研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spectroscopic Analysis of Ethanol Solution Detection with Ge_(15)Sb_(20)Se_(65) Chalcogenide Glass Tapered Fiber
  • 作者:王晓美 ; 杨晨风 ; 戴世勋 ; 王莹莹 ; 徐栋 ; 尤晨阳
  • 英文作者:Wang Xiaomei;Yang Chenfeng;Dai Shixun;Wang Yingying;Xu Dong;You Chenyang;Laboratory of Infrared Material and Devices,Advanced Technology Research Institute,Ningbo University;Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province;
  • 关键词:光纤光学 ; 硫系玻璃光纤 ; 红外传感 ; 拉锥光纤 ; 红外光谱
  • 英文关键词:fiber optics;;chalcogenide glass fiber;;infrared sensing;;tapered fiber;;infrared spectroscopy
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:宁波大学高等技术研究院红外材料及器件实验室;浙江省光电探测材料及器件重点实验室;
  • 出版日期:2018-01-30 09:53
  • 出版单位:光学学报
  • 年:2018
  • 期:v.38;No.435
  • 基金:国家自然科学基金(61435009,61627815);; 浙江省重中之重学科开放基金(xkxl1536);; 宁波大学王宽诚幸福基金
  • 语种:中文;
  • 页:GXXB201806007
  • 页数:7
  • CN:06
  • ISSN:31-1252/O4
  • 分类号:52-58
摘要
采用熔融淬冷法制备了Ge_(15)Sb_(20)Se_(65)硫系玻璃,并拉制成直径为500μm的裸玻璃光纤,损耗测量结果显示光纤在6μm波长处的最低损耗为1.68dB/m。利用自行搭建的自动光纤拉锥平台拉制了腰锥直径分别为20,100,250μm的拉锥光纤,并对不同浓度的乙醇溶液进行了光谱分析检测实验,最后基于光纤倏逝波理论用COMSOL Multi physics软件仿真了三种不同腰锥直径的锥形光纤对乙醇溶液的传感灵敏特性,与实验结果进行了对比。
        In this work,Ge_(15)Sb_(20)Se_(65) glass is synthesized by the melt-quenching method and then drawn into a bare glass fiber with a diameter of 500μm.The minimum transmission loss of this fiber is about 1.68 dB/m at the wavelength of 6μm.A homemade tapering platform allows to taper the chalcogenide fibers into different waist diameters of 20,100 and 250μm,respectively.The spectroscopic analysis of the tapered fibers in ethanol solution with different concentrations is presented.Based on the theory of fiber evanescent wave,the sensing characteristics of the tapered fiber in the ethanol solution are simulated by COMSOL Multiphysics software.The results of simulation and experiment are compared and discussed.
引文
[1]Lucas P,Riley M R,Boussard-Pledel C,et al.Advances in chalcogenide fiber evanescent wave biochemical sensing[J].Analytical Biochemistry,2006,351(1):1-10.
    [2]Sanghera J S,Kung F H,Pureza P C,et al.Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers[J].Applied Optics,1994,33(27):6315-6322.
    [3]Mizaikoff B.Mid-IR fiber-optic sensors[J].Analytical Chemistry,2003,75(11):258A-267A.
    [4]Eggleton B J,Luther-Davies B,Richardson K.Chalcogenide photonics[J].Nature Photonics,2011,5(3):141-148.
    [5]Ying D M,Dai S X,Wang X S,et al.Research process of infrared chalcogenide glass fibers in sensing fields[J].Laser and Optoelectronics Process,2013,50(2):020010.尹冬梅,戴世勋,王训四,等.红外硫系玻璃光纤在传感领域的研究进展[J].激光与光电子学进展,2013,50(2):020010.
    [6]Compton D A C,Hill S L,Wright N A,et al.In situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber[J].Applied Spectroscopy,1988,42(6):972-979.
    [7]Heo J,Rodrigues M,Saggese S J,et al.Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers[J].Applied Optics,1991,30(27):3944-3951.
    [8]Rodrigues M,Sigel G H.Chalcogenide glass fibers for remote spectroscopic chemical sensing[C].SPIE,1992,1591:225-236.
    [9]Maurugeon S,Bureau B,Boussard-Pledel C,et al.Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing[J].Optical Materials,2011,33(4):660-663.
    [10]HocdéS,Boussard-Pledel C,Fonteneau G,et al.Recent developments in chemical sensing using infrared glass fibers[J].Journal of Non-Crystalline Solids,2000,274(1/2/3):17-22.
    [11]Le Coq D,Michel K,Fonteneau G,et al.Infrared chalcogen glasses:chemical polishing and fibre remote spectroscopy[J].International Journal of Inorganic Materials,2001,3(3):233-239.
    [12]Zhao M F,Jiao L Z,Dong D M,et al.The analysis of sensitivity for evanescent wave sensors[J].Piezoelectrics and Acoustoortics,2012,34(1):23-26.赵明富,矫雷子,董大明,等.线性锥形光纤倏逝波传感器的灵敏度分析[J].压电与声光,2012,34(1):23-26.
    [13]Le Coq D,Michel K,Keirsse J,et al.Infrared glass fibers for in-situ sensing,chemical and biochemical reactions[J].Comptes Rendus Chimie,2002,5(12):907-913.
    [14]Bureau B,Zhang X H,Smektala F,et al.Recent advances in chalcogenide glasses[J].Journal of NonCrystalline Solids,2004,345(20):276-283.
    [15]Toupin P,Brilland L,Boussard-Pledel C,et al.Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing[J].Journal of Non-Crystalline Solids,2013,377(10):217-219.
    [16]Bureau B,Boussard-Pledel C,Cui S,et al.Chalcogenide optical fibers for mid-infrared sensing[J].Optical Engineering,2014,53(2):027101.
    [17]MacDonald S,Michel K,Le Coq D,et al.Optical analysis of infrared spectra recorded with tapered chalcogenide glass fibers[J].Optical Materials,2004,25(2):171-178.
    [18]Dai S X,Chen F F,Xu Y S,et al.Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-SbSe ternary system[J].Optics Express,2015,23(2):1300-1307.
    [19]Luo B H,Wang Y Y,Sun Y N,et al.Fabrication and characterization of bare Ge-Sb-Se chalcogenide glassfiber taper[J].Infrared Physics and Technology,2017,80:105-111.
    [20]Sanghera J S,Shaw L B,Busse L E,et al.Infraredtransmitting fiber optics for biomedical applications[C].SPIE,1999,3596:178-188.
    [21]Troles J,Shiryaev V,Churbanov M,et al.GeSe4glass fibres with low optical losses in the mid-IR[J].Optical Materials,2009.32(1):212-215.
    [22]HocdéS,Boussard-Pledel C,Fonteneau G,et al.Chalcogens based glasses for IR fiber chemical0606001-6sensors[J].Solid State Sciences,2001,3(3):279-284.
    [23]Wang H,Zhou W C,Li K W,et al.Label-free biosensing characteristics of micro/nano-fiber coupler[J].Acta Optica Sinica,2017,37(3):0306005.汪海,周文超,李凯伟,等.微纳光纤耦合器无标生物传感特性[J].光学学报,2017,37(3):0306005.
    [24]Fu X H,Zhang J P,Fang Y C,et al.Tapered double-cladding fiber temperature sensor based on surface temperature sensitive thin-film[J].Chinese Journal of Lasers,2017,44(8):0810001.付兴虎,张江鹏,方一程,等.基于表面温敏薄膜的锥形双包层光纤温度传感器[J].中国激光,2017,44(8):0810001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700