用户名: 密码: 验证码:
激光相位对空间构型光晶格中超冷原子干涉对比度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Laser Phase on Interference Contrast Ratio of Ultracold Atoms in Optical Lattice with Spatial Configuration
  • 作者:成中豪 ; 李云红 ; 金圣杰 ; 周小计
  • 英文作者:Cheng Zhonghao;Li Yunhong;Jin Shengjie;Zhou Xiaoji;College of Electronic Information, Xi′an Polytechnic University;School of Electronics Engineering and Computer Science, Peking University;
  • 关键词:激光器 ; 光晶格 ; 空间构型 ; 玻色-爱因斯坦凝聚 ; 对比度 ; 锁相环 ; 相位锁定
  • 英文关键词:lasers;;optical lattice;;spatial configuration;;Bose-Einstein condensates;;contrast ratio;;phase-locking loop;;phase locking
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:西安工程大学电子信息学院;北京大学信息科学技术学院;
  • 出版日期:2018-10-20 11:54
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.444
  • 基金:国家自然科学基金(61475007);; 陕西省科技厅自然科学基础研究重点项目(2016JZ026)
  • 语种:中文;
  • 页:GXXB201903026
  • 页数:8
  • CN:03
  • ISSN:31-1252/O4
  • 分类号:225-232
摘要
利用功率反馈排除晶格阱深波动导致的不稳定性后,主要研究了激光在空间或介质中传输的相位波动对晶格中超冷原子对比度的影响。通过晃动光晶格,人为引入可控相位噪声来测量其对原子对比度的影响,发现不同强度的相位噪声对实验结果的影响显著不同。但是小强度的相位噪声对超冷原子干涉对比度的影响并不明显,目前干涉对比度的测量精度并不能完全反映出激光相位对冷原子系统相干性的影响,说明这种空间构型光晶格在捕获超冷原子方面具有较高的稳健性。所提出的激光相位锁定技术可以有效减少晶格系统中的相位噪声,为未来空间构型光晶格中更精密的测量提供了基础。
        After the instability caused by lattice depth fluctuation is eliminated using power feedback, the effect of the phase fluctuation for a laser propagating through space or other media on the interference contrast of ultracold atoms in an optical lattice is investigated. A man-made and tunable phase noise is introduced by shaking the optical lattice and its effect on atomic interference contrast ratio is measured. It is found that the phase noises with different intensities have different effects on the experimental results. However, the phase noise with a small intensity has a trivial effect on the interference contrast ratio of ultracold atoms. At present, the measurement accuracy of interference contrast ratio cannot fully show the influence of laser phase on the coherent property of a cold atomic system. This means that this kind of optical lattice with a spatial configuration possesses a good robustness in the capture of ultracold atoms. Furthermore, in order to improve the phase stability, a laser phase locking technique is proposed for the optical lattice with a spatial configuration, which can effectively reduce the phase noise in the lattice system and provide a basis for the future high precision measurements by an optical lattice with a spatial configuration.
引文
[1] Hemmerich A, H?nsch T W. Two-dimesional atomic crystal bound by light[J]. Physical Review Letters, 1993, 70(4): 410.
    [2] Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms[J]. Nature, 2002, 415(6867): 39-44.
    [3] Lounis B, Verkerk P, Courtois J Y, et al. Quantized atomic motion in 1D cesium molasses with magnetic field[J]. Europhysics Letters, 1993, 21(1): 13-17.
    [4] Morsch O, Oberthaler M. Dynamics of Bose-Einstein condensates in optical lattices[J]. Reviews of Modern Physics, 2006, 78(1): 179.
    [5] Derevianko A, Katori H. Colloquium: physics of optical lattice clocks[J]. Reviews of Modern Physics, 2011, 83(2): 331.
    [6] Hu D, Niu L X, Jin S J, et al. Ramsey interferometry with trapped motional quantum states[J]. Communications Physics, 2018, 1: 29.
    [7] Brennen G K, Caves C M, Jessen P S, et al. Quantum logic gates in optical lattices[J]. Physical Review Letters, 1999, 82(5): 1060.
    [8] Hemmerich A, Zimmermann C, H?nsch T W. Multiphoton transitions in a spin-polarized 3D optical lattice[J]. Physical Review Letters, 1994, 72(5): 625.
    [9] Jo G B, Guzman J, Thomas C K, et al. Ultracold atoms in a tunable opticalkagome lattice[J]. Physical Review Letters, 2012, 108(4): 045305.
    [10] Jürgensen O, Lühmann D S. Dimerized Mott insulators in hexagonal optical lattices[J]. New Journal of Physics, 2014, 16(9): 093023.
    [11] Soltan-Panahi P, Struck J, Hauke P, et al. Multi-component quantum gases in spin-dependent hexagonal lattices[J]. Nature Physics, 2011, 7(5): 434-440.
    [12] Zou X H, Yang B G, Xu X, et al. Isolated structures in two-dimensional optical superlattice[J]. Frontiers of Physics, 2017, 12(5): 123201.
    [13] Hu D,Niu L X, Yang B G, et al. Long-time nonlinear dynamical evolution for P-band ultracold atoms in an optical lattice[J]. Physical Review A, 2015, 92(4): 043614.
    [14] Zhou X J. Finite temperature phase transition in a cross-dimensional triangular lattice[EB/OL]. (2018-05-22)[2018-07-14]. https://arxiv.org/abs/1805.08790.
    [15] Sun K, Liu W V, Hemmerich A, et al. Topological semimetal in a fermionic optical lattice[J]. Nature Physics, 2012, 8(1): 67-70.
    [16] Bloch I, Dalibard J, Zwerger W. Many-body physics with ultracold gases[J]. Reviews of Modern Physics, 2008, 80(3): 885.
    [17] Zheng X T. Control of laser power and phase in ultracold atomic experiment[D]. Beijing: Peking University, 2014. 郑新涛. 超冷原子实验中激光功率与相位的控制[D]. 北京: 北京大学, 2014.
    [18] Becker C. Multi component Bose-Einstein condensates: from mean field physics to strong correlations[D]. Hamburg: University of Hamburg, 2008.
    [19] Bloch I. Ultracold quantum gases in optical lattices[J]. Nature Physics, 2005, 1(1): 23-30.
    [20] Zhai Y Y, Yue X G, Wu Y J, et al. Effective preparation and collisional decay of atomic condensates in excited bands of an optical lattice[J]. Physical Review A, 2013, 87(6): 063638.
    [21] Niu L X, Hu D, Jin S J, et al. Excitation of atoms in an optical lattice driven by polychromatic amplitude modulation[J]. Optics Express, 2015, 23(8): 10064.
    [22] Wang Z K, Yang B G, Hu D, et al. Observation of quantum dynamical oscillations of ultracold atoms in the F and D bands of an optical lattice[J]. Physical Review A, 2016, 94(3): 033624.
    [23] Zhou X J, Jin S J, Schmiedmayer J. Shortcut loading a Bose-Einstein condensate into an optical lattice[J]. New Journal of Physics, 2018, 20(5): 055005.
    [24] Poli N, Wang F Y, Tarallo M G, et al. Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter[J]. Physical Review Letters, 2011, 106(3): 038501.
    [25] Ferrari G, Poli N, Sorrentino F, et al. Long-lived bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale[J]. Physical Review Letters, 2006, 97(6): 060402.
    [26] McGuyer H, McDonald M, Iwata Z, et al. High-precision spectroscopy of ultracold molecules in an optical lattice[J]. New Journal of Physics, 2015, 17(5): 055004.
    [27] Wang Z Y, Jin S Z, Li Y, et al. Comparison of 1.5 μm ultra-stable laser systems based on fiber noise suppression system[J]. Chinese Journal of Lasers, 2017, 44(4): 0404001. 王朝阳, 金尚忠, 李烨, 等. 基于光纤噪声抑制系统的1.5 μm超稳激光系统比对[J]. 中国激光, 2017, 44(4): 0404001.
    [28] Ma L S, Jungner P, Ye J, et al. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path[J]. Optics Letters, 1994, 19(21): 1777-1779.
    [29] Prevedelli M, Freegarde T, Hansch T W. Phase-locking of grating-tuned diode-lasers[J]. Applied Physics B, 1995, 60: S241-S248.
    [30] Savard T A, O′hara K M, Thomas J E. Laser-noise-induced heating in far-off resonance optical traps[J]. Physical Review A, 1997, 56(2): r1095.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700