用户名: 密码: 验证码:
光纤Bragg光栅传感监测解调系统设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of optical fiber Bragg grating sensor monitoring and demodulation system
  • 作者:冯艳 ; 张震 ; 张华 ; 王飞文 ; 严明辉
  • 英文作者:FENG Yan;ZHANG Zhen;ZHANG Hua;WANG Feiwen;YAN Minghui;Key Laboratory for Robot and Welding Automation of Jiangxi Province,School of Mechatronic Engineering,Nanchang University;School of Qianhu,Nanchang University;
  • 关键词:光纤Bragg光栅 ; 监测系统 ; 温度监测 ; 应变监测 ; LabVIEW
  • 英文关键词:optical fiber Bragg grating;;monitoring system;;temperature monitoring;;strain monitoring;;LabVIEW
  • 中文刊名:SYJL
  • 英文刊名:Experimental Technology and Management
  • 机构:南昌大学机电工程学院江西省机器人与焊接自动化重点实验室;南昌大学前湖学院;
  • 出版日期:2019-01-17 14:07
  • 出版单位:实验技术与管理
  • 年:2019
  • 期:v.36;No.269
  • 基金:国家自然科学基金项目(51665039);; 江西省优势科技创新团队建设计划项目(20171BCB24001)资助
  • 语种:中文;
  • 页:SYJL201901034
  • 页数:5
  • CN:01
  • ISSN:11-2034/T
  • 分类号:151-155
摘要
采用波分和空分混合复用技术和LabVIEW,设计了一种可通过单片机控制的光纤Bragg光栅(FBG)传感监测解调系统,实现了温度和应变的实时监测。实验研究表明,在20~100℃范围内,温度监测平均误差0.3℃,标准差0.163℃,实验灵敏度与标定灵敏度之间的灵敏度误差为0.29%;在0~390με应变范围内,应变监测平均误差2.79με,标准差2.63με,悬臂梁上下FBG实验灵敏度与标定灵敏度之间的灵敏度误差分别为0.10%、0.19%。该解调系统实现了高灵活性、高精度的温度和应变监测。
        A fiber Bragg grating(FBG)sensor monitoring and demodulation system controlled by SCM is designed by using WDM and space division multiplexing technology and LabVIEW,and the real-time monitoring of temperature and strain is realized.The experimental results show that the average error of temperature monitoring is 0.3℃,the standard deviation is 0.163℃in the range of 20℃ to 100℃,and the sensitivity error between the experimental sensitivity and the calibration sensitivity is 0.29%.In the range of 0to 390 strain,the average error of the strain monitoring is 2.79μεand the standard deviation is 2.63με.The sensitivity errors between the sensitivity of FBG experiment and the calibration sensitivity of cantilever beam are 0.10% and 0.19%respectively.This demodulation system realizes the temperature and strain monitoring with high flexibility and high precision.
引文
[1] JAHAN M A I,HONNUNGAR R V,VERSHA R.Analysis of FBG Sensor for Accurate Pressure Sensing With Improved Sensitivity[J].Materials Today:Proceedings,2018,5(2):5452-5458.
    [2] ZHANG S J,LIU Y M.Fabrication of FBG strain gauge used for high temperature strain monitoring[J].Applied Mechanics and Materials,2014,668-669:920-923.
    [3]曹晔,刘波,开桂云,等.光纤光栅传感技术研究现状及发展前景[J].传感器技术,2005(12):1-4.
    [4]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子·激光,2002(4):420-430.
    [5] RAO Y J,RIBEIRO A B L,JACKSON D A,et al.In-fiber grating sensing network with a combined SDM,TDM,and WDM topology[C]//Conference on Lasers and Electro-Optics.Cleos,1996:244.
    [6] MAHMOODI M,JAMES L A,JOHANSEN T.Automated advanced image processing for micromodel flow experiments;an application using LabVIEW[J].Journal of Petroleum Science and Engineering,2018,167(8):829-843
    [7]薛得凤.基于图形化编程语言Labview的一种虚拟仪器的实现[J].自动化与仪器仪表,2003(5):24-26.
    [8]周勤峰,徐铁峰.基于串口的光纤光栅解调仪多通道扩展电路设计[J].宁波大学学报(理工版),2007,20(3):285-288.
    [9]陶珺,穆磊,杜平.基于InGaAs光谱成像技术的光纤光栅传感器在大坝渗流监测系统的应用[J].光子学报,2010,39(1):42-45.
    [10]胡辽林,张卫超,华灯鑫,等.基于LabVIEW的光纤光栅传感的动态解调[J].计算应用,2013,33(5):1473-1475.
    [11]张勇军,赵振刚,许俊飞,等.结合波分复用和空分复用的光纤光栅串口总线式检测系统[J].光学技术,2015,41(3):233-237.
    [12]苑立波,ANSARI F.光纤光栅原理与应用(一):光纤光栅原理[J].光通信技术,1998(1):70-78.
    [13]王目光,魏淮,童治,等.利用双周期光纤光栅实现应变和温度同时测量[J].光学学报,2002(7):867-869.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700