用户名: 密码: 验证码:
Local Energy Dissipation/Transition in Field Effect Molecular Nanoelectronic Systems:a Quantum Mechanical Methodology
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Local Energy Dissipation/Transition in Field Effect Molecular Nanoelectronic Systems:a Quantum Mechanical Methodology
  • 作者:Reza ; Safari ; Hassan ; Sabzyan
  • 英文作者:Reza Safari;Hassan Sabzyan;Department of Chemistry, Faculty of Science, University of Qom;Department of Chemistry, University of Isfahan;
  • 英文关键词:intra-molecularheattransfer;;local energy dissipation;;?eldeffect molecular device;;nanoelectronic devices;;QTAIM
  • 中文刊名:CITP
  • 英文刊名:理论物理(英文版)
  • 机构:Department of Chemistry, Faculty of Science, University of Qom;Department of Chemistry, University of Isfahan;
  • 出版日期:2019-04-01
  • 出版单位:Communications in Theoretical Physics
  • 年:2019
  • 期:v.71
  • 基金:Financial supports from the Research and Technology offices of the University of Qom and the University of Isfahan
  • 语种:英文;
  • 页:CITP201904014
  • 页数:14
  • CN:04
  • ISSN:11-2592/O3
  • 分类号:89-102
摘要
Electronic and vibrational intra-molecular thermoelectric-like ?gures of merit(ZT_γ~M) are introduced for single molecule nanoelectronic system, using quantum theory of atoms in molecule. These ?gures of merit are used to describe intra-molecular or local energy dissipation/transition(as in Joule-like, Peltier-like, and Thomson-like effects) in?eld effect molecular devices. The ZT_γ~M?gures of merit are computed for two proposed molecular devices. Analysis of the results shows that ZT_γ~Mdepends almost non-linearly on the electric ?eld(EF) strength. Also, the intra-molecular Joule-like heating plays a dominant role in the local energy dissipation, and intra-molecular Thomson-like heating is generally larger than the intra-molecular Peltier-like heating. Introduction of ZT_γ~Mcan be applied to extend the analysis of thermoelectric heating down to molecular and intra-molecular levels, and thus can be used to predict characteristics and performance of any candidate multi-terminal or multi-pole molecular systems prior to their application in real nanoelectronic circuits.
        Electronic and vibrational intra-molecular thermoelectric-like ?gures of merit(ZT_γ~M) are introduced for single molecule nanoelectronic system, using quantum theory of atoms in molecule. These ?gures of merit are used to describe intra-molecular or local energy dissipation/transition(as in Joule-like, Peltier-like, and Thomson-like effects) in?eld effect molecular devices. The ZT_γ~M?gures of merit are computed for two proposed molecular devices. Analysis of the results shows that ZT_γ~Mdepends almost non-linearly on the electric ?eld(EF) strength. Also, the intra-molecular Joule-like heating plays a dominant role in the local energy dissipation, and intra-molecular Thomson-like heating is generally larger than the intra-molecular Peltier-like heating. Introduction of ZT_γ~Mcan be applied to extend the analysis of thermoelectric heating down to molecular and intra-molecular levels, and thus can be used to predict characteristics and performance of any candidate multi-terminal or multi-pole molecular systems prior to their application in real nanoelectronic circuits.
引文
[1]M.A.Reed and T.Lee,Molecular Nanoelectronics,American Scientific,Stevenson Ranch,California,USA(2003).
    [2]V.V.Mitin,V.A.Kochelap,and M.A.Stroscio,Introduction to Nanoelectronics:Science,Nanotechnology,Engineering,and Applications,Cambridge University Press,London(2008).
    [3]K.Iniewski,Nanoelectronics:Nanowires,Molecular Electronics,and Nanodevices,McGraw-Hill,New York(2010).
    [4]R.Jom and T.Seideman,J.Chem.Phys.129(2008)194703.
    [5]E.Pop,Nano Res.3(2010)147.
    [6]S.Shaik,S.P.de Visser,and D.Kumar,J.Am.Chem.Soc.126(2004)11746.
    [7]S.Shaik,D.Mandal,and R.Ramanan,Nature Chem.8(2016)1091.
    [8]A.A.Arabi and C.F.Matta,Phys.Chem.Chem.Phys.13(2011)13738.
    [9]D.Huang,S.K.Lyo,K.J.Thomas,and M.Pepper,Phys.Rev.B 77(2008)085320.
    [10]S.Lakshmi,S.Dutta,and S.K.Pati,J.Phys.Chem.C112(2008)14718.
    [11]Q.K.Timerghazin and M.R.Talipov,J.Phys.Chem.Lett.4(2013)1034.
    [12]B.J.Dutta and P.K.Bhattacharyya,J.Phys.Chem.B.118(2014)9573.
    [13]X.Wang,J.Z.H.Zhang,and H.Xiao,J.Chem.Phys.143(2015)184111.
    [14]G.Velpula,J.Teyssandier,S.De Feyter,and K.S.Mali,ACS Nano 11(2017)10903.
    [15]M.Rohdenburg,M.Mayer,M.Grellmann,et al.,Angew.Chem.Intl.Ed.56(2017)7980.
    [16]K.Goser and P.Jan Dienstuhl,Nanoelectronics and Nanosystems:From Transistors to Molecular and Quantum Devices,Springer,Berlin(2004).
    [17]M.Lundstrom and G.Guo,Nanoscale Transistors:Device Physics,Modeling and Simulation,Springer,Berlin(2005).
    [18]P.E.Blochl,C.Joachim,and A.J.Fisher,Computations for the Nano-Scale,NATO ASI Series,Series E:Applied Sciences,Kluwer Academic,Boston,USA(1992).
    [19]G.Cuniberti,G.Fagas,and K.Richter,Introducing Molecular Electronics,Springer,Berlin(2005).
    [20]B.L.Feringa,Molecular Switches,Wiley,Weinheim(2007).
    [21]H.Sabzyan and D.Farmanzadeh,J.Mol.Mod.14(2008)1023.
    [22]J.M.Seminario,Molecular and Nano Electronics:Analysis,Design and Simulation,Elsevier,New York,USA(2006).
    [23]K.A.Chao and M.Larsson,Thermoelectric Phenomena from Macro-Systems to Nano-Systems,Springer,Berlin(2007).
    [24]R.R.Heikes and R.W.Ure,Thermoelectricity:Science and Engineering,Inter Science,New York(1961).
    [25]D.M.Rowe,CRC Handbook of Thermoelectrics:Macro to Nano,CRC Press,Boca Raton(2006).
    [26]A.Pecchia,G.Romano,A.D.Carlo,et al.,J.Comput.Electron.7(2008)384.
    [27]K.Walczak,Phys.B 392(2007)173.
    [28]Y.Dubi and M.Di Ventra,Rev.Mod.Phys.83(2011)131.
    [29]J.A.Malen,S.K.Yee,A.Majumdar,and R.A.Segalman,Chem.Phys.Lett.491(2010)109.
    [30]Y.S.Liu,H.T.Yao,and Y.C.Chen,J.Phys.Chem.C115(2011)14988.
    [31]V.Schops,V.Zlatic,and T.A.Costi,J.Phys.:Conf.Ser.273(2011)012155.
    [32]D.Nozaki,H.Sevincli,W.Li,et al.,Phys.Rev.B 81(2010)235406.
    [33]A.Crepieux,F.Simkovic,B.Cambon,and F.Michelini,Phys.Rev.B 83(2011)153417.
    [34]E.Iyoda,Y.Utsumi,and T.Kato,J.Phys.Soc.Jpn.79(2009)045003.
    [35]M.Hatami and G.E.W.Bauer,Phys.Rev.B 79(2009)174426.
    [36]A.Shakouri,Annu.Rev.Mater.Res.41(2011)399.
    [37]K.L.Grosse,M.H.Bae,F.Lian,et al.,Nature Nanotech.6(2011)287.
    [38]E.Macia,Phys.Rev.B 75(2007)035130.
    [39]M.Galperin,A.Nitzan,and M.R.Ratner,Mol.Phys.106(2008)397.
    [40]S.H.Ke,M.Yang,S.Curtarolo,and H.U.Baranger Nano Lett.9(2009)1011.
    [41]K.K.Saha,T.Markussen,K.S.Thygesen,and B.K.Nikolic,Phys.Rev.B 84(2011)041412R.
    [42]Y.Liu,X.Fan,D.Yang,et al.,Chem.Phys.Lett.380(2003)767.
    [43]M.Tsutsui,M.Taniguchi,and T.Kawai,Nano Lett.8(2008)3293.
    [44]Y.Dubi and M.Di Ventra,Nano Lett.9(2009)97.
    [45]R.D’Agosta and M.Di Ventra,J.Phys.:Condens.Matt.20(2008)374102.
    [46]M.Galperin,A.Nitzan,and M.R.Ratner,Phys.Rev.B75(2007)155312.
    [47]S.Segal,Phys.Rev.B 73(2006)205415.
    [48]A.Salomon,D.Cahen,S.Lindsay,et al.,Adv.Mater.15(2003)1881.
    [49]V.Burtman,A.S.Ndobe,and Z.V.Vardeny,Solid State Commun.135(2005)563.
    [50]D.Farmanzadeh and Z.Ashtiani,Struct.Chem.21(2010)691.
    [51]T.Markussen,J.Chen,and K.S.Thygesen,Phys.Rev.B 83(2011)155407.
    [52]E.H.Huisman,C.M.Guedon,B.J.van Wees,and S.J.van der Nano Lett.9(2009)3909.
    [53]J.Chen,T.Markussen and K.S.Thygesen,Phys.Rev.B 82(2010)121412(R).
    [54]S.Karthauser,J.Phys.Condens.Matter 23(2011)013001.
    [55]W.Wang,T.Lee,and M.A.Reed,Rep.Prog.Phys.68(2005)523.
    [56]H.Liu,Z.Zhao,N.Wang,et al.,J.Comput.Chem.32(2011)1687.
    [57]F.Anariba and R.L.McCreery,J.Phys.Chem.B 106(2002)10355.
    [58]L.G.C.Rego and G.Kirczenow,Phys.Rev.Lett.81(1998)232.
    [59]A.Grelner,T.Kuhn,and L.Varanl,Phys.Rev.Lett.78(1997)1114.
    [60]Y.S.Liu and X.F.Yang,J.Appl.Phys.108(2010)023710.
    [61]D.Segal and A.Nitzan,Phys.Rev.Lett.94(2005)034301.
    [62]H.Sabzyan and R.Safari,Europhys.Lett.99(2012)67005.
    [63]R.Safari and H.Sabzyan,J.Iran.Chem.Soc.11(2014)1513.
    [64]R.F.W.Bader,Atoms in Molecules,Oxford University,U.K.(1995).
    [65]P.Popelier,Atoms in Molecules,Pearson,London,U.K.(2000).
    [66]C.F.Matta and R.J.Boyd,The Quantum Theory of Atoms in Molecules,Wiley,Weinheim,Germany(2007).
    [67]C.F.Matta and R.J.Boyd,Quantum Biochemistry,Wiley,Weinheim,Germany(2010).
    [68]G.A.Venter and J.Dillen,THEOCHEM 915(2009)112.
    [69]R.F.W.Bader and J.Chem.Phys.91(1989)6989.
    [70]I.Mata,E.Molins,I.Alkorta,et al.,J.Chem.Phys.130(2009)044104.
    [71]I.N.Levine,Molecular Spectroscopy,Wiley,New York(1975).
    [72]J.D.Graybeal,Molecular Spectroscopy,McGraw-Hill,New York(1988).
    [73]E.B.Wilson,J.G.Decius,and C.Cross,Molecular Vibrations,Dover,New York(1980).
    [74]Y.L.Yao,Irreversible Thermodynamics,Science,Beijing(1981).
    [75]X.Y.Zhu,Surf.Sci.Rep.56(2004)1.
    [76]D.Segal,J.Chem.Phys.128(2008)224710.
    [77]E.H.Huisman,C.M.Gudon,B.J.Wees,and S.J.van der Molen,Nano Lett.9(2009)3909.
    [78]A.Bezryadin,C.Dekker,and G.Schmid,Appl.Phys.Lett.71(1997)1273.
    [79]J.Koch and F.von Oppen,Phys.Rev.Lett.94(2005)206804.
    [80]F.Pistolesi,J.Low Temp.Phys.154(2009)199.
    [81]H.Straube,J.M.Wagner,and O.Breitenstein,Appl.Phys.Lett.95(2009)052107.
    [82]O.Breitenstein and M.Langenkamp,Lock-in Thermography-Basics and Use for Functional Diagnostics of Electronic Components,Springer,Berlin(2003).
    [83]F.A.Serrano Orozco,G.N.Logvinov,Y.Gurevich,and I.M.Lashkevych,Rev.Mexico.De Fisica S53(2007)203.
    [84]G.N.logvinov,J.E.Velazquez,I.M.Lashkevych,and Y.G.Gurevich,Appl.Phys.Lett.89(2006)092118.
    [85]M.Frisch,G.W.Trucks,H.B.Schlegel,et al.,Gaussian98,Gaussian,Inc.Pittsburgh,PA(1998).
    [86]B.Friedrich,D.Yang,G.Schonbohm,and R.W.F.Bader,Atoms in Molecules(AIM),McMaster University,Canada(2000).
    [87]L.Huang,L.Massa,and C.F.Matta,Carbon 76(2014)310.
    [88]S.Sowlati-Hashjin and C.F.Matta,J.Chem.Phys.139(2013)144101.
    [89]J.K.Tomfohr and O.F.Sankey,Phys.Rev.B 65(2002)245105.
    [90]E.N.Bogachek,A.G.Scherbakov,and U.Landman,Solid State Commun.108(1998)851.
    [91]L.W.Molenkamp,Th.Gravier,H.van Houten,et al.,Phys.Rev.Lett.68(1992)3765.
    [92]H.Nakamura,N.Hatano,R.Naomichi,et al.,J.Electron.Mater.40(2011)601.
    [93]H.van Houten,L.W.Molenkamp,C.W.J.Beenakker,and C.T.Foxon,Semicond.Sci.Technol.7(1992)B215.
    [94]A.H.Aly,Chin.Phys.Lett.25(2008)4399.
    [95]M.Leijnse,M.R.Wegewijs,and K.Flensberg,Phys.Rev.B 82(2010)045412.
    [96]F.Chi and Y.Dubi,J.Phys.:Condens.Matter 24(2012)145301.
    [97]A.L.Magna and I.Deretzis,Phys.Rev.Lett.99(2007)136404.
    [98]K.P.Pipe,R.J.Ram,and A.Shakouri,Phys.Rev.B 66(2002)125316.
    [99]Y.S.Liu,Y.R.Chen,and Y.C.Chen,ACSNano 3(2009)3497.
    [100]J.P.Bergfield and C.A.Stafford,Nano Lett.9(2009)3072.
    [101]F.Cortes-Guzman and R.F.W.Bader,Coordin.Chem.Rev.249(2005)633.
    [102]P.Rashidi-Ranjbar,A.Sadjadi,G.H.Shafiee,and C.Foroutan-Nejad,THEOCHEM 856(2008)79.
    [103]S.E.Lyshevski,Nano and Molecular Electronics Handbook,CRC Press,Boca Raton(2007).
    [104]C.Ziegler,Handbook of Organic Conductive Molecules and Polymers,Wiley,London,UK(1997).
    [105]N.K.Jha and D.Chen,Nanoelectronic Circuit Design,Springer Science,New York,USA(2011).
    [106]P.Samori,STM and AFM Studies on(Bio)Molecular Systems:Unravelling the Nanoworld;Topics in Current Chemistry,Springer,Heidelberg,Germany(2010).
    [107]S.N.Magonov and M.H.Whangbo,Surface Analysis with STM and AFM:Experimental and Theoretical Aspects of Image Analysis,VCH,New York,USA(1996).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700