用户名: 密码: 验证码:
基于粒子群算法优化光谱指数的甜菜叶片氮含量估测研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Estimation of Sugar Beet Leaf Nitrogen Content Based on Spectral Parameters Optimized by Particle Swarm Optimization
  • 作者:田海清 ; 张晶 ; 张珏 ; 吴利斌 ; 王迪 ; 李斐
  • 英文作者:TIAN Haiqing;ZHANG Jing;ZHANG Jue;WU Libin;WANG Di;LI Fei;College of Mechanical and Electrical Engineering,Inner Mongolia Agricultural University;College of Physics and Electronic Information,Inner Mongolia Normal University;College of Grassland,Resources and Environment Science,Inner Mongolia Agricultural University;
  • 关键词:甜菜 ; 叶片氮含量 ; 高光谱图像 ; 粒子群 ; 光谱指数
  • 英文关键词:sugar beet;;leaf nitrogen content;;hyperspectral image;;particle swarm;;spectral parameters
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:内蒙古农业大学机电工程学院;内蒙古师范大学物理与电子信息学院;内蒙古农业大学草原与资源环境学院;
  • 出版日期:2019-01-10 09:13
  • 出版单位:农业机械学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金项目(41261084);; 内蒙古自然科学基金项目(2016MS0346)
  • 语种:中文;
  • 页:NYJX201903018
  • 页数:11
  • CN:03
  • ISSN:11-1964/S
  • 分类号:175-185
摘要
为对甜菜叶片氮含量进行快速估测,利用高光谱成像仪获取甜菜冠层叶片高光谱图像数据,通过凯氏定氮法测定叶片氮含量。基于精细采样法在全波段范围内构建归一化光谱指数(Normalized difference spectral index,NDSI)和土壤调节光谱指数(Soil-adjusted spectral index,SASI),并提出了基于粒子群算法的植被冠层调节参数L优化方法,探寻任意波段组合下SASI的最佳L值及其变化规律。在筛选出特征光谱指数基础上,开展甜菜叶片氮含量的定量估测和可视化研究。结果表明,各生育期SASI对甜菜冠层叶片氮含量(Canopy leaf nitrogen content,CLNC)的敏感度高于NDSI,尤其在NDSI易发生饱和现象的近红外区域。相比常规光谱指数,叶丛快速生长期基于SASI1(R430. 20,R896. 76)和SASI2(R433. 03,R896. 01)建立的CLNC估测模型预测效果最优,2015年验证集R~2为0. 78,RMSE为2. 48 g/kg,RE为4. 18%;糖分增长期以SASI3(R952. 09,R946. 11)和SASI4(R760. 37,R803. 48)的建模效果最佳,2015年验证集R~2为0. 67,RMSE为2. 71 g/kg,RE为4. 72%;糖分积累期的最优建模参数为SASI5(R883. 30,R887. 79),2015年模型R~2为0. 72,RMSE为2. 54 g/kg,RE为4. 49%。为直观显示甜菜CLNC在时间和空间尺度上的变化规律,基于上述估测模型计算并生成甜菜CLNC的预测分布图,实现了甜菜CLNC的可视化。研究结果表明,提出的甜菜CLNC估测方法具有可行性,可为及时了解作物长势及营养估测提供技术支持。
        In order to estimate the nitrogen content of sugar beet leaves quickly,sugar beet was taken as the research object. The hyperspectral image data of canopy leaves was obtained by hyperspectral imaging spectrometer. At the same time,the nitrogen content of leaves was determined by Kjeldahl method.Based on the meticulous sampling method,the normalized spectral parameter( NDSI) and the soiladjusted vegetation index( SASI) were constructed in the whole-wavelength range. Moreover,in order to search for the optimal value of L in SASI under arbitrary band combination,the particle swarm optimization algorithm was proposed to optimize the L. On the basis of the previous work mentioned above,the sensitive spectral parameters were selected to achieve the optimization,and the estimation model was constructed to carry out the quantitative diagnosis and visualization research of the nitrogen content in the sugar beet leaves. The results indicated that the sensitivity of SASI to the canopy leaf nitrogen content( CLNC) of sugar beet was higher than that of NDSI for each different growth period.Especially in the near-infrared region where saturation easilyoccurred,the correlation was significantly improved. Compared with the conventional spectral parameters, based on SASI1( R430. 20,R896. 76)and SASI2( R433. 03,R896. 01),an optimal CLNC estimation model of BP net for the rapid growth period of the beet leaves was able to be established. The determination coefficient( R~2) of validation set was 0. 78,the root mean square error( RMSE) was 2. 48 g/kg and the relative error( RE) was 4. 18%( in the year of2015). The model established based on SASI3( R952. 09,R946. 11)and SASI4( R760. 37,R803. 48)for the sugar growth period had the best performance. The R~2 of verification set was 0. 67,the RMSE was 2. 71 g/kg,and RE was 4. 72%( in the year of 2015). The optimal modeling parameters for the sugar accumulation period were SASI5( R883. 30,R887. 79),and the R~2 of the model was 0. 72,the RMSE was 2. 54 g/kg,and the RE was4. 49%( in the year of 2015). Based on the above model,combined with the spectral information of each band under every pixel of hyperspectral image, the CLNC was calculated, and the CLNC concentration graphs of sugar beet were plotted,which directly and visually presented the distribution of nitrogen content in the sugar beet leaves at different time scales and different leaf positions. The research results introduced that the proposed estimation method of CLNC in sugar beet was feasible,which also provided technical support for timely observation of crop growth and nutritional diagnosis.
引文
[1]姚文秋.现代甜菜产业技术[M].北京:中国农业大学出版社,2014.
    [2]全东平.基于高光谱的柑橘叶片氮磷钾含量检测模型[D].广州:华南农业大学,2016.QUAN Dongping. Measurement model of nitrogen,phosphorus and potassium content for citrus leaves based on hyperspectrum[D]. Guangzhou:South China Agricultural University,2016.(in Chinese)
    [3]张珏,田海清,李哲,等.基于数码相机图像的甜菜冠层氮素营养监测[J].农业工程学报,2018,34(1):157-163.ZHANG Jue,TIAN Haiqing,LI Zhe,et al. Monitoring of nitrogen nutrition in sugar beet canopy based on digital camera images[J]. Transactions of the CSAE,2018,34(1):157-163.(in Chinese)
    [4]王超,王建明,冯美臣,等.基于多变量统计分析的冬小麦长势高光谱估算研究[J].光谱学与光谱分析,2018,38(5):1520-1525.WANG Chao,WANG Jianming,FENG Meichen,et al. Hyperspectral estimation of winter wheat growth based on multivariate statistical analysis[J]. Spectroscopy and Spectral Analysis,2018,38(5):1520-1525.(in Chinese)
    [5]章海亮,楚秉泉,叶青,等.高光谱成像技术鉴别鱼新鲜度[J].光谱学与光谱分析,2018,38(2):559-563.ZHANG Hailiang,CHU Bingquan,YE Qing,et al. Identification of fish freshness by hyperspectral imaging[J]. Spectroscopy and Spectral Analysis,2018,38(2):559-563.(in Chinese)
    [6]赵杰文,黄晓玮,邹小波,等.基于嗅觉可视化技术的猪肉新鲜度检测[J].食品科学技术学报,2013,31(1):9-13.ZHAO Jiewen,HUANG Xiaowei,ZOU Xiaobo,et al. Detection of pork freshness based on olfactory visualization technology[J]. Journal of Food Science and Technology,2013,31(1):9-13.(in Chinese)
    [7] HE Hongjun,SUN Dawen,WU Di. Rapid and real-time prediction of lactic acid bacteria(LAB)in farmed salmon flesh using near-infrared(NIR)hyperspectral imaging combined with chemometric analysis[J]. Food Research International,2014,62:476-483.
    [8]邹小波,李志华,石吉勇,等.高光谱成像技术检测肴肉新鲜度[J].食品科学,2014,35(8):89-93.ZOU Xiaobo,LI Zhihua,SHI Jiyong,et al. Detection of meat freshness by hyperspectral imaging[J]. Food Science,2014,35(8):89-93.(in Chinese)
    [9] FENG Yaoze,ELMASRY G,SUN Dawen,et al. Near-infrared hyperspectral imaging and partial least squares regression for rapid and reagentless determination of enterobacteriaceae on chicken fillets[J]. Food Chemistry,2013,138(2-3):1829-1836.
    [10] RAJKUMAR P,WANG N,EIMASRY G,et al. Studies on banana fruit quality and maturity stages using hyperspectral imaging[J]. Journal of Food Engineering,2012,108(1):194-200.
    [11]赵茂程,杨君荣,陆丹丹,等.基于高光谱成像的青梅酸度检测方法[J/OL].农业机械学报,2017,48(9):318-323.ZHAO Maocheng,YANG Junrong,LU Dandan,et al. Detection methods of greengage acidity based on hyperspectral imaging[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(9):318-323. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20170940&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298.2017. 09. 040.(in Chinese)
    [12]郑涛,刘宁,孙红,等.基于高光谱成像的马铃薯叶片叶绿素分布可视化研究[J/OL].农业机械学报,2017,48(增刊):153-159,340.ZHENG Tao,LIU Ning,SUN Hong,et al. Visualization of chlorophyll distribution of potato leaves based on hyperspectral imaging technology[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(Supp.):153-159,340. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=2017s025&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298. 2017. S0. 025.(in Chinese)
    [13]于慧春,王润博,殷勇,等.基于不同波段的枸杞多糖及总糖高光谱成像检测[J].食品科学,2017,38(8):191-197.YU Huichun,WANG Runbo,YIN Yong,et al. Detection of polysaccharides and total sugar in chinese wolfbery based on hyperspectral imaging in different wavebands[J]. Food Science,2017,38(8):191-197.(in Chinese)
    [14]谢传奇.基于高光谱成像技术的茄子叶片色差值检测和早疫病识别方法研究[D].杭州:浙江大学,2015.XIE Chuanqi. Detection of color difference in eggplant leaves and identification of early blight based on hyperspectral imaging[D]. Hangzhou:Zhejiang University,2015.(in Chinese)
    [15] HUANG Wenqian,LI Jiangbo,ZHANG Chi,et al. Hyperspectral imaging and principal component analysis for recognition of embryos in corn grain[J]. Transactions of the CSAE,2012,28(Supp. 2):243-247.
    [16]吴琼.基于高光谱成像技术的小麦苗期监测研究[D].长春:吉林大学,2012.WU Qiong. Wheat seedling monitoring based on hyperspectral imaging technology[D]. Changchun:Jilin University,2012.(in Chinese)
    [17]何嘉琳,乔春燕,李冬冬,等.可见-近红外高光谱成像技术对灵武长枣VC含量的无损检测方法[J].食品科学,2018,39(6):194-199.HE Jialin,QIAO Chunyan,LI Dongdong,et al. Non-destructive detection of vitamin c content in“Lingwu Changzao”jujubes(Zizyphus jujuba mill. cv. Lingwu Changzao)using visible near infrared hyperspectral imaging[J]. Food Science,2018,39(6):194-199.(in Chinese)
    [18]李丹,李斐,胡云才,等.基于光谱指数波段优化算法的小麦玉米冠层含氮量估测[J].光谱学与光谱分析,2016,36(4):1150-1157.LI Dan,LI Fei,HU Yuncai,et al. Estimation of nitrogen content in wheat and maize canopy based on spectral index band optimization algorithm[J]. Spectroscopy and Spectral Analysis,2016,36(4):1150-1157.(in Chinese)
    [19] HUETE A R. A soil-adjusted vegetation index(SAVI)[J]. Remote Sensing of Environment,1988,25(3):295-309.
    [20]虞连玉,蔡焕杰,姚付启,等.植被指数反演冬小麦植被覆盖度的适用性研究[J/OL].农业机械学报,2015,46(1):231-239.YU Lianyu,CAI Huanjie,YAO Fuqi,et al. Applicability of vegetation indices to estimate fractional vegetation coverage[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(1):231-239. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20150133&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298.2015. 01. 033.(in Chinese)
    [21] INOUE Y,SAKAIYA E,ZHU Y,et al. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements[J]. Remote Sensing of Environment,2012,126:210-221.
    [22] MULLA D J. Twenty five years of remote sensing in precision agriculture:key advances and remaining knowledge gaps[J].Biosystems Engineering,2013,114(4):358-371.
    [23] SIEGMANN B,JARMER T. Comparison of different regression models and validation techniques for the assessment of wheat leaf area index from hyperspectral data[J]. International Journal of Remote Sensing,2015,36(18):4519-4534.
    [24]任建强,吴尚蓉,刘斌,等.基于Hyperion高光谱影像的冬小麦地上干生物量反演[J/OL].农业机械学报,2018,49(4):199-211.REN Jianqiang,WU Shangrong,LIU Bin,et al. Retrieving winter wheat above-ground dry biomass based on Hyperion hyperspectral imagery[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(4):199-211.http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20180423&journal_id=jcsam. DOI:10.6041/j. issn. 1000-1298. 2018. 04. 023.(in Chinese)
    [25]贾丽艳,王丽丽.对微量凯氏定氮法测定蛋白质含量的改进[J].农产品加工(学刊),2010(1):64-65,75.JIA Liyan,WANG Lili. Improved micro-Kjeldahl determination of protein content[J]. Academic Periodical of Farm Products Processing,2010(1):64-65,75.(in Chinese)
    [26]冯海宽,杨福芹,杨贵军,等.基于特征光谱参数的苹果叶片叶绿素含量估算[J].农业工程学报,2018,34(6):182-188.FENG Haikuan,YANG Fuqin,YANG Guijun,et al. Estimation of chlorophyll content in apple leaves base on spectral feature parameters[J]. Transactions of the CSAE,2018,34(6):182-188.(in Chinese)
    [27] ZARCO-TEJADA P J,MILLER P J,NOLAND T L,et al. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(7):1491-1507.
    [28] GITELSON A A,VINA A,CIGANDA V,et al. Remote estimation of canopy chlorophyll content in crops[J]. Geophysical Research Letters,2005,32(8):403-406.
    [29] GUPTA R K,VIJAYAN D,PRASAD T S. Comparative analysis of red edge hyperspectral indices[J]. Advance Space Researeh,2003,32(11):2217-2222.
    [30] BROGE N H,LEBLANC E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment,2001,76(2):156-172.
    [31] GUYOT G,BARET F,MAJOR D J. High spectral resolution:determination of spectral shifts between the red and the near infrared[J]. International Archives of Photogrammetry and Remote Sensing,1988,27(11):750-760.
    [32]李想,戴维,高红菊,等.基于BP神经网络的粮食产量与化肥用量相关性研究[J/OL].农业机械学报,2017,48(增刊):186-192.LI Xiang,DAI Wei,GAO Hongju,et al. Correlation between grain yield and fertilizer use based on back propagation neural network[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(Supp.):186-192. http:∥www.j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=2017s030&journal_id=jcsam. DOI:10. 6041/j. issn.1000-1298. 2017. S0. 030.(in Chinese)
    [33]杨柳,孙金华,冯仲科,等.基于PSO-LSSVM的森林地上生物量估测模型[J/OL].农业机械学报,2016,47(8):273-279,287.YANG Liu,SUN Jinhua,FENG Zhongke,et al. Estimation model of forest above-ground biomass based on PSO-LSSVM[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(8):273-279,287. http:∥www. j-csam.org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20160836&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298. 2016. 08. 036.(in Chinese)
    [34]李晶,徐涵秋,李霞,等.水土流失区马尾松林植被提取的土壤调节指数分析[J].地球信息科学学报,2015,17(9):1128-1134.LI Jing,XU Hanqiu,LI Xia,et al. Soil adjustment index analysis of pinus massoniana forest vegetation extraction in soil erosion area[J]. Journal of Geo-Information Science,2015,17(9):1128-1134.(in Chinese)
    [35]冯伟,朱艳,姚霞,等.利用红边特征参数监测小麦叶片氮素积累状况[J].农业工程学报,2009,25(11):194-201.FENG Wei,ZHU Yan,YAO Xia,et al. Monitoring nitrogen accumulation in wheat leaf with red edge characteristics parameters[J]. Transactions of the CSAE,2009,25(11):194-201.(in Chinese)
    [36]周丽丽,冯汉宇,阎忠敏,等.玉米叶片氮含量的高光谱估算及其品种差异[J].农业工程学报,2010,26(8):195-199.ZHOU Lili,FENG Hanyu,YAN Zhongmin,et al. Hyperspectral diagnosis of leaf N concentration of maize and variety difference[J]. Transactions of the CSAE,2010,26(8):195-199.(in Chinese)
    [37]余克强,赵艳茹,李晓丽,等.高光谱成像技术的不同叶位尖椒叶片氮素分布可视化研究[J].光谱学与光谱分析,2015,35(3):746-750.YU Keqiang,ZHAO Yanru,LI Xiaoli,et al. Application of hyperspectral imaging for visualization of nitrogen content in pepper leaf with different positions[J]. Spectroscopy and Spectral Analysis,2015,35(3):746-750.(in Chinese)
    [38]邵金旺.甜菜生理学[M].北京:农业出版社,1991.
    [39]王秋红,周建朝,王孝纯.采用SPAD仪进行甜菜氮素营养诊断技术研究[J].中国农学通报,2015,31(36):92-98.WANG Qiuhong,ZHOU Jianzhao,WANG Xiaochun. Study on nitrogen nutrition diagnosis technology of sugar beet using SPAD instrument[J]. China Agriculture Science Bulletin,2015,31(36):92-98.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700