用户名: 密码: 验证码:
混凝土/花岗岩界面动态断裂性能的轴拉试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Axial tensile tests for dynamic fracture characteristics of concrete-granite interface
  • 作者:钟红 ; 马振洲 ; 胡少伟 ; 范向前
  • 英文作者:ZHONG Hong;MA Zhenzhou;HU Shaowei;FAN Xiangqian;State Key Lab of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research;State Key Lab of Coastal and Offshore Engineering, Dalian University of Technology;Bohai Hebei Investment Group Co.,Ltd.;Nanjing Hydraulic Research Institute;State Key Lab of Hydrology-Water Resources and Hydraulic Engineering;
  • 关键词:轴向拉伸试验 ; 界面断裂 ; 峰值荷载 ; 吸能能力 ; 断裂韧度
  • 英文关键词:axial tension test;;interfacial fracture;;peak load;;energy absorption capacity;;fracture toughness
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:中国水利水电科学研究院流域水循环模拟与调控国家重点实验室;大连理工大学海岸和近海工程国家重点实验室;河北渤海投资集团有限公司;南京水利科学研究院;水文水资源与水利工程科学国家重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.343
  • 基金:国家自然科学基金项目(51579033);; 中国水利水电科学研究院基本科研业务费专项项目(EB0145B112019);; 国家重点研发计划(2017YFC0404903;2016YFB0201000;2016YFC0401600)
  • 语种:中文;
  • 页:ZDCJ201911024
  • 页数:7
  • CN:11
  • ISSN:31-1316/TU
  • 分类号:160-166
摘要
为研究混凝土和花岗岩界面断裂的加载应变率效应,利用MTS试验机对带有双边预制裂缝的花岗岩试件、混凝土试件和混凝土/花岗岩复合试件等三种试件进行了轴向拉伸试验。通过裂缝张开口位移进行控制,获得了不同应变率(10~(-6)~10~(-3) s~(-1))下的荷载-裂缝张开口位移曲线,据此计算了荷载上升段的吸能能力,并基于结构动力分析和断裂力学、界面力学理论获得了试件的断裂韧度;结果表明,三类试件的断裂面形态随着应变率的变化呈现不同的特征,三者的峰值荷载、吸能能力和断裂韧度均随应变率的提高而增加。对三类试件断裂特性在中低应变率范围内的率效应机理进行了分析,对比了准脆性材料界面断裂与母材断裂率效应的异同。
        In order to study the loading strain rate effect of interfacial fracture of concrete-granite, axial tensile tests were performed on granite specimens, concrete ones and concrete-granite composite ones with bilateral precast cracks using a MTS testing machine under different loading rates. Through controlling crack opening displacement, load-crack opening displacement curves under strain rates of 10~(-6)—10~(-3)s~(-1) were obtained, and then the energy absorption capacity during loading rising was calculated. Based on theories of structural dynamic analysis, fracture mechanics and interfacial mechanics, the specimens' fracture toughness were calculated. The results showed that with the variation of strain rate, fracture surface morphologies of the three kinds of specimens exhibit different features; their peak load, energy absorption capacity and fracture toughness increase with increase in strain rate. The rate effect mechanisms of the three kinds of specimens' fracture characteristics were analyzed, respectively within the range of middle-low strain rates; quasi-brittle materials' interfacial fracture and base material's fracture rate effect are compared.
引文
[1] 肖诗云,田子坤.混凝土单轴动态受拉损伤试验研究[J].土木工程学报,2008,41(7):14-20.XIAO Shiyun,TIAN Zikun.Experimental study on the uniaxial dynamic tensile damage of concrete[J].China Civil Engineering Journal,2008,41(7):14-20.
    [2] PRICE D G,KNILL J L.A study of the tensile strength of isotropic rocks[C]//1st ISRM Congress.International Society for Rock Mechanics.Lisbon,1966.
    [3] ZHAO J,LI H B.Experimental determination of dynamic tensile properties of a granite[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(5):861-866.
    [4] 吴绵拔,刘远惠.龙门石灰岩动力特性试验研究[J].岩石力学与工程学报,1996,15(增刊1):422-427.WU Mianba,LIU Yuanhui.Testing study of dynamic characteristics for Longmen limestone[J].Chinese Journal of Rock Mechanics and Engineering,1996,15(Sup1):422-427.
    [5] GOMEZ J T,SHUKLA A,SHARMA A.Static and dynamic behavior of concrete and granite in tension with damage[J].Theoretical and Applied Fracture Mechanics,2001,36(1):37-49.
    [6] ROSSI P,VAN MIER J G M,TOUTLEMONDE F,et al.Effect of loading rate on the strength of concrete subjected to uniaxial tension[J].Materials and structures,1994,27(5):260-264.
    [7] ROSS C A,JEROME D M,TEDESCO J W,et al.Moisture and strain rate effects on concrete strength[J].ACI Materials Journal,1996,93(3):293-300.
    [8] 范向前,胡少伟,陆俊,等.不同初始损伤混凝土动态轴向拉伸试验研究[J].振动与冲击,2016,35(17):117-120.FAN Xiangqian,HU Shaowei,LU Jun,et al.Dynamic axial tensile tests of concrete with different initial damages[J].Journal of Vibration and Shock,2016,35(17):117-120.
    [9] 范向前,胡少伟,陆俊,等.不同初始静载混凝土轴向拉伸试验研究[J].振动与冲击,2017,36(2):83-88.FAN Xiangqian,HU Shaowei,LU Jun,et al.Effects of initial static loads on the tensile strength of concrete[J].Journal of Vibration and Shock,2017,36(2):83-88.
    [10] LEE K M,BUYUKOZTURK O,OUMERA A.Fracture analysis of mortar-aggregate interfaces in concrete[J].Journal of Engineering Mechanics,1992,118(10):2031-2046.
    [11] BUYUKOZTURK O,HEARING B.Crack propagation in concrete composites influenced by interface fracture parameters[J].International Journal of Solids and Structures,1998,35(31/32):4055-4066.
    [12] ZHONG H,OOI E T,SONG C,et al.Experimental and numerical study of the dependency of interface fracture in concrete-rock specimens on mode mixity[J].Engineering Fracture Mechanics,2014,124/125:287-309.
    [13] 黄松梅,简政,马素菁,等.混凝土异弹模界面裂缝断裂准则的试验研究[J].水利学报,1994 (6):74-79.HUANG Songmei,JIAN Zheng,MA Sujing,et al.Experimental investigation on fracture criterion for interface crack of concrete with different elastic properties[J].Journal of Hydraulic Engineering,1994 (6):74-79.
    [14] DONG Wei,WU Zhimin,ZHOU Xiangming.Fracture mechanisms of rock-concrete interface:experimental and numerical[J].Journal of Engineering Mechanics ASCE,2016,142(7):04016040(1-11).
    [15] 戴峰,王启智.冲击载荷作用下动态应力强度因子的迭加积分法[J].振动与冲击,2005,24(3):89-95.DAI Feng,WANG Qizhi.Superposition integral method for deriving stress intensity factor under impact loading[J].Journal of Vibration and Shock,2005,24(3):89-95.
    [16] 许金泉.界面力学[M].北京:科学出版社,2006.
    [17] 董伟,张利花,吴智敏.岩石-混凝土界面拉伸软化本构关系试验研究[J].水利学报,2014,45(6):712-719.DONG Wei,ZHANG Lihua,WU Zhimin.Experiment study on tension softening constitutive relation of rock-concrete interface[J].Journal of Hydraulic Engineering,2014,45(6):712-719.
    [18] GRADY D E,KIPP M E.Continuum modelling of explosive fracture in oil shale[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.Pergamon,1980.
    [19] SANG H C,OGATA Y,KANEKO K.Strain-rate dependency of the dynamic tensile strength of rock[J].International Journal of Rock Mechanics & Mining Sciences,2003,40(5):763-777.
    [20] 党发宁,潘峰,焦凯,等.不均匀脆性材料动强度提高机理及破坏形态研究[J].地震工程与工程振动,2015,35(3):111-118.DANG Faning,PAN Feng,JIAO Kai,et al.Mechanism for enhancement of dynamic strength and failure model of nonuniform brittle materials[J].Earthquake Engineering and Engineering Dynamics,2015,35(3):111-118.
    [21] 党发宁,焦凯,潘峰.混凝土抗折动强度及其极值研究[J].爆炸与冲击,2016,36(3):422-428.DANG Faning,JIAO Kai,PAN Feng.Investigation on concrete dynamic bending intensity and limit flexural intensity[J].Explosion and Shock Waves,2016,36(3):422-428.
    [22] 闫东明,林皋,王哲,等.不同环境下混凝土动态直接拉伸特性研究[J].大连理工大学学报,2005,45(3):416-421.YAN Dongming,LIN Gao,WANG Zhe,et al.Research on dynamic direct tensile properties of concrete under different environments[J].Journal of Dalian University of Technology,2005,45(3):416-421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700