用户名: 密码: 验证码:
苯磺隆胁迫下油菜萌发期相关性状的全基因组关联分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genome-Wide Association Analysis of Tribenuron-Methyl Tolerance Related Traits in Brassica napus L. Under Germination
  • 作者:周清元 ; 王倩 ; 叶桑 ; 崔明圣 ; 雷维 ; 郜欢欢 ; 赵愉风 ; 徐新福 ; 唐章林 ; 李加纳 ; 崔翠
  • 英文作者:ZHOU QingYuan;WANG Qian;YE Sang;CUI MinSheng;LEI Wei;GAO HuanHuan;ZHAO YuFeng;XU XinFu;TANG ZhangLin;LI JiaNa;CUI Cui;College of Agronomy and Biotechnology, Southwest University;
  • 关键词:油菜 ; 萌发期 ; 苯磺隆 ; 全基因组关联分析
  • 英文关键词:Brassica napus L.;;germination;;tribenuron-methyl tolerance;;GWAS
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:西南大学农学与生物科技学院;
  • 出版日期:2019-02-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:国家重点研发计划(2018YFD0100505);; 现代农业产业技术体系(CARS-12);; 重庆市社会事业与民生保障科技创新(cstc2015shmszx80026)
  • 语种:中文;
  • 页:ZNYK201903002
  • 页数:15
  • CN:03
  • ISSN:11-1328/S
  • 分类号:20-34
摘要
【目的】研究苯磺隆残留对油菜种子萌发的影响,运用全基因组关联分析(genome-wide association analysis,GWAS)揭示苯磺隆胁迫下油菜萌发期相关性状的遗传因子和候选基因,探究油菜在苯磺隆逆境胁迫下的生理形态所反映的基因调控机制,为耐苯磺隆油菜品种的研究提供参考。【方法】以241份甘蓝型油菜品种(系)为材料、25 mg·L-1苯磺隆溶液为处理液、蒸馏水为对照进行发芽试验。发芽7 d测定并计算相对发芽率、相对根长和相对鲜重。结合芸薹属60K SNP芯片分析群体基因型,通过STRUCTURE软件和TASSEL软件分别对该群体进行群体结构分析以及亲缘关系和LD衰减分析。为有效排除假关联的影响,采用一般线性模型(GLM)和混合线性模型(MLM)中的6种模型进行比较,确定每个性状GWAS分析的最优模型。同时,利用TASSEL软件在最优模型下对241份材料的3个性状分别进行全基因组关联分析,根据关联SNP位点的LD区间序列预测候选基因。【结果】241份品种(系)群体可分为P1(94份材料)和P2(147份材料)2个亚群,其中约56.28%的材料之间的亲缘关系值为0。全基因组关联分析(K+PCA模型)共检测到16个与性状显著关联的SNP位点,这些位点可解释9.42%—13.14%的表型变异率。通过分析显著SNP位点的LD区间与甘蓝型油菜对应的区间序列,筛选出25个候选基因可能与油菜耐苯磺隆有关,其中9个为细胞色素P450家族基因,5个参与谷胱甘肽合成或代谢过程,2个为多药耐药相关蛋白基因。同时发现与相对发芽率显著相关的基因ATGSTU19编码谷胱甘肽转移酶,参与毒素分解过程,在各种胁迫反应中起重要作用。在相对根长和相对鲜重共同鉴定到的候选基因BnaC02g27690D功能未知。【结论】共检测到16个SNP位点与耐苯磺隆性状显著关联,筛选出25个候选基因可能与油菜耐苯磺隆有关。
        【Objective】To investigate the effect of residual tribenuron-methyl in soil on seed germination, genome-wide association analysis(GWAS) of 52157 SNPs with genome-wide coverage was used to identify the candidate genes for the germinating traits of rapeseed under tribenuron-methyl stress. The results of this study may provide a theoretical basis for tribenuron-methyl tolerance in oilseed rape.【Method】In the germination experiment, 241 rape varieties(lines) were treated with tribenuron-methyl solution of 25 mg·L-1, and distilled water was added to the control. At the 7th day of germination, the phenotypic data including relative germination rate, relative root length and relative fresh weight were measured and calculated. Using the TASSEL software, tribenuron-methyl tolerance related traits were explored in B. napus under germination with a 60 K Brassica Illumina? Infinium SNP array. Then, the structure of the population was analyzed by the software STRUCTURE, and the genetic relationship and LD attenuation were analyzed by the software TASSEL, respectively. In order to determine the optimal model for GWAS analysis of each trait, 6 models involved the general linear model and mixed linear model were used to analyze and compare the effects of group structure and relationship. The software TASSEL was employed to analyze the relative values of the 3 traits under the optimal model. Meanwhile, the candidate genes were predicted based on the LD interval sequence of the associated SNP locus. 【Result】 The population structure analysis showed the population could be divided into two subgroups, P1 with 94 materials and P2 with 147 materials. Meanwhile, the result of genetic relationship analysis showed that about 56.28% of the materials had no kinship relationship. In the optimal GWAS model(K+PCA), we found that 16 SNP loci significantly associated with 3 traits including relative root length, relative fresh weight and relative germination rate, and each locus explained phenotypic variations ranging from 9.42% to 13.14%. By analyzing the LD interval of the significant SNP locus and the corresponding interval sequence of Brassica napus, twenty-five candidate genes related to tribenuron-methyl tolerance were screened out in the LD interval of these significant SNP loci, in which nine of them belonged to cytochrome P450 gene families, five were involved in glutathione synthesis or metabolic processes, and two were multidrug-tolerance associated protein. At the same time, it was revealed that the gene ATGSTU19 significantly related to germination rate encodes glutathione transferase, which participates in the process of toxin decomposition and plays an important role in various stress responses. In addition, BnaC02g27690 D was identified at relative root length and relative fresh weight. However, its function was not clear. 【Conclusion】 In this study, 16 SNP loci were detected to be significantly associated with tribenuron-methyl tolerance, and 25 candidate genes were screened out.
引文
[1]AND B J M,FALCO S C.The development of herbicide resistant crops.Annual Review of Plant Physiology and Plant Molecular Biology,2003,40(1):441-470.
    [2]TRANEL P J,WRIGHT T R.Resistance of weeds to ALS-inhibiting herbicides:What have we learned?Weed Science,2002,50(6):700-712.
    [3]DIXON F L,CLAY D V.Effect of herbicides applied pre-and post-emergence on forestry weeds grown from seed.Crop Protection,2004,23(8):713-721.
    [4]王正贵.除草剂对小麦产量和品质的影响及其残留特性[D].扬州:扬州大学,2011.WANG Z G.Effects of herbicides on grain yield and quality in wheat and relevant residual behavior[D].Yangzhou:Yangzhou University,2011.(in Chinese)
    [5]杜慧平,杜慧玲.苯磺隆在土壤中的消解动态和残留测定.山西农业科学,2015(1):50-53.DU H P,DU H L.Tribenuron-methly degradation dynamics and residual in soil.Journal of Shanxi Agricultural Sciences,2015(1):50-53.(in Chinese)
    [6]单正军,陈祖义.除草剂对非靶植物(农作物)的危害影响及控制技术.农药科学与管理,2007(9):50-54.SHAN Z J,CHEN Z Y.Harm and control technology of herbicides to non target plants(crops).Pesticide Science and Administration,2007(9):50-54.(in Chinese)
    [7]唐建明,王勇,方雅琴.油菜田常用除草剂药害及规避措施.杂草学报,2010(1):64-66.TANG J M,WANG Y,FANG Y Q.Herbicide phytotoxicity and evasion measures in rape fields.Journal of Weeds,2010(1):64-66.(in Chinese)
    [8]孙妍妍,曲高平,黄谦心,吕金洋,郭媛,胡胜武.甘蓝型油菜抗苯磺隆突变体ALS基因分析与SNP标记.中国油料作物学报,2015,37(5):589-595.SUN Y Y,QU G P,HUANG Q X,LV J Y,GUO Y,HU S W.SNPmarkers for acetolactate synthase genes from tribenuron-methyl resistant mutants in Brassica napus L..Chinese Journal of Oil Crop Sciences,2015,37(5):589-595.(in Chinese)
    [9]李忠爱,陈欣,王子成.氯化镍对拟南芥生长发育和生理生化指标的影响.农业科技与信息,2014(24):44-48.LI Z A,CHEN X,WANG Z C.The effects of nickel chloride(NiCl2)on growth,development and physiology in Arabidopsis thaliana.Agricultural Science-Technology and Information,2014(24):44-48.(in Chinese)
    [10]王倩,崔翠,叶桑,崔明圣,赵愉风,林呐,唐章林,李加纳,周清元.甘蓝型油菜种子萌发期耐苯磺隆种质筛选与综合评价.作物学报,2018,44(8):1169-1184.WANG Q,CUI C,YE S,CUI M S,ZHAO Y F,LIN N,TANG Z L,LIJ N,ZHOU Q Y.Screening and comprehensive evaluation of germplasm resources with tribenuron-methyl tolerance at germination stage in rapeseed(Brassica napus L.).Acta Agronomica Sinica,2018,44(8):1169-1184.(in Chinese)
    [11]HU G H,LI Z,LU Y C,LI C X,GONG S C,YAN S Q,LI G L,WANG M Q,REN H L,GUAN H T,ZHANG Z W,QIN D L,CHAIM Z,YU J P,LI Y,YANG D G,WANG T Y,ZHANG Z W.Genome-wide association study identified multiple genetic loci on chilling resistance during germination in maize.Scientific Reports,2017,7(1):10840.
    [12]LI D H,DOSSA KOMIVI,ZHANG Y X,WEI X,WANG L X,ZHANG Y J,LIU A L,ZHOU R,ZHANG X R.GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage.Genes,2018,9(2):87.
    [13]SNOWDON R J,INIGUEZ LUY F L.Potential to improve oilseed rape and canola breeding in the genomics era.Plant Breeding,2012,131(3):351-360.
    [14]CHEN L L,WAN H P,QIAN J L,GUO J B,SUN C M,WEN J,YI B,MA C Z,TU J X,SONG L Q,FU T D,SHEN J X.Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed(Brassica napus L.).Frontiers in Plant Science,2018,9:375-390.
    [15]WAN H P,CHEN L L,GUO J B,LI Q,WEN J,YI B,MA C Z,TU JX,FU T D,SHEN J X.Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed(Brassica napus L.).Frontiers in Plant Science,2017,8:593-608.
    [16]WEI L J,JIAN H J,LU K,FILARDO F,YIN N W,LIU L Z,QU C M,LI W,DU H,LI J N.Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus.Plant Biotechnology Journal,2016,14(6):1368.
    [17]HATZIG S V,FRISCH M,BREUER F,NESI N,DUCOURNAU S,WAGNER M H,LECKBAND G,ABBADI A,SNOWDON R J.Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus.Frontiers in Plant Science,2015,6(221):221.
    [18]LIU S,FAN C,LI J,CAI G,YANG Q,WU J,YI X,ZHANG C,ZHOU Y.A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus.Theoretical&Applied Genetics,2016,129(6):1203-1215.
    [19]XU L,HU K,ZHANG Z,GUAN C,CHEN S,HUA W,LI J,WEN J,YI B,SHEN J,MA C,TU J,FU T.Genome-wide association study reveals the genetic architecture of flowering time in rapeseed(Brassica napus L.).DNA Research an International Journal for Rapid Publication of Reports on Genes&Genomes,2016,23(1):43.
    [20]陈东亮,崔翠,任义英,王倩,李加纳,唐章林,周清元.草铵膦胁迫下油菜苗期叶片药害相关性状的全基因组关联分析.作物学报,2018,44(4):542-553.CHEN D L,CUI C,REN Y Y,WANG Q,LI J N,TANG Z L,ZHOUQ Y.Genome-wide association analysis of some phytotoxicity related traits at seedling stage in rapeseed.Acta Agronomica Sinica,2018,44(4):542-553.(in Chinese)
    [21]ZHANG L,LU Q,CHEN H G,PAN G,XIAO S S,DAI Y T,LI Q,ZHANG J W,WU X Z,WU J S,TU H M,LIU K D.Identification of a cytochrome P450 hydroxylase,CYP81A6,as the candidate for the bentazon and sulfonylurea herbicide resistance gene,Bel,in rice.Molecular Breeding,2007,19(1):59-68.
    [22]杨倩,邓维,梅宇,司冲,焦洪涛,郑明奇.RNA-seq分析抗苯磺隆播娘蒿代谢相关基因//第十二届全国杂草科学大会论文摘要集.太原:中囯植物保护学会杂草学分会,2015.YANG Q,DENG W,MEI Y,SI C,JIAO H T,ZHENG M Q.RNA-seq analysis of genes related to metabolism of tribenuron-methyl in Sisymbrium junceum Willd//Abstracts of the Twelfth National Conference on Weed Science.Taiyuan:Weed Science Society of China CSPP,2015.(in Chinese)
    [23]YANG Q,DENG W,LI X,YU Q,BAI L,ZHENG M.Target-site and non-target-site based resistance to the herbicide tribenuron-methyl in flixweed(Descurainia sophia L.).BMC Genomics,2016,17(1):551.
    [24]GAINES T A,FIGGE A,HERRMANN J,MAIWALD F,OTT M C,HAN H,BUSI R,YU Q,POWLES S B,BEFFA R.RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum.The Plant Journal,2014,78(5):865-876.
    [25]DONG B,QIAN W,HU J.Dissipation kinetics and residues of florasulam and tribenuron-methyl in wheat ecosystem.Chemosphere,2015,120:486-491.
    [26]信晓阳,曲高平,张荣,庞红喜,吴强,王发禄,胡胜武.不同品种油菜对苯磺隆耐药性差异的鉴定.西北农业学报,2014,23(7):68-74.XIN X Y,QU G P,ZHANG R,PANG H X,WU Q,WANG F L,HU SW.Identification of the tribenuron-methyl tolerance in different rapeseed genotypes.Acta Agriculturae Boreali-Occidentalis Sinica,2014,23(7):68-74.(in Chinese)
    [27]曲高平,孙妍妍,庞红喜,吴强,王发禄,胡胜武.甘蓝型油菜EMS突变体库构建及抗除草剂突变体筛选.中国油料作物学报,2014,36(1):25-31.QU G P,SUN Y Y,PANG H X,WU Q,WANG F L,HU S W.Ems mutagenesis and als-inhibitor herbicide-resistant mutants of Brassica napus L..Chinese Journal of Oil Crop Sciences,2014,36(1):25-31.(in Chinese)
    [28]汪亚琴.水稻抗除草剂基因CYP81A6转化油菜的研究[D].武汉:华中农业大学,2013.WANG Y Q.The expression of rice herbicide resistance gene CYP81A6 in Brassica napus[D].Wuhan:Huazhong Agricultural University,2013.(in Chinese)
    [29]YU J,PRESSOIR G,BRIGGS W H,VROH B I,YAMASAKI M,DOEVLEY J F,MCMULLEN M D,GAUT B S,NIELSEN D M,HOLLAND J B,KRESOVICH S,BUCKLER E S.A unified mixed-model method for association mapping that accounts for multiple levels of relatedness.Nature Genetics,2006,38(2):203-208.
    [30]任义英,崔翠,王倩,唐章林,徐新福,林呐,殷家明,李加纳,周清元.油菜主花序角果密度及其相关性状的全基因组关联分析.中国农业科学,2018,51(6):1020-1033.REN Y Y,CUI C,WANG Q,TANG Z L,XU X F,LIN N,YIN J M,LI J N,ZHOU Q Y.Genome-wide association analysis of silique density on Racemes and its component traits in Brassica napus L.Scientia Agricultura Sinica,2018,51(6):1020-1033.(in Chinese)
    [31]贺亚军,吴道明,游婧璨,钱伟.油菜耐盐相关性状的全基因组关联分析及其候选基因预测.中国农业科学,2017,50(7):1189-1201.HE Y J,WU D M,YOU J C,QIAN W.Genome-wide association analysis of salt tolerance related traits in Brassica napus and candidate gene prediction.Scientia Agricultura Sinica,2017,50(7):1189-1201.(in Chinese)
    [32]王荣焕,王天宇,黎裕.植物基因组中的连锁不平衡.遗传,2007,29(11):1317-1323.WANG R H,WANG T Y,LI Y.Linkage disequilibrium in plant genomes.Hereditas,2007,29(11):1317-1323.(in Chinese)
    [33]HOU B,LIM E K,HIGGINS G S,BOWLES D J.N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana.Journal of Biological Chemistry,2004,279(46):47822-47832.
    [34]SUKWEENADHI J,KIM Y J,CHOI E S,KOH S C,LEE S W,KIMY J,YANG D C.Paenibacillus yonginensis DCY84(T)induces changes in Arabidopsis thaliana gene expression against aluminum drought and Tribenuron stress.Microbiological Research,2015,172:7-15.
    [35]SHIKHA M,MALLANA G M,ATMAKURI R R,PRASHANT A J,PRASANTA K D,NEPOLEAN T.Comparative analysis of CDPKfamily in maize,Arabidopsis,rice,and sorghum revealed potential targets for drought tolerance improvement.Frontiers in Chemistry,2017,5:115-132.
    [36]TAKEI K,YAMAYA T,SAKAKIBARA H.Arabidopsis CYP735A1and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin.Journal of Biological Chemistry,2004,279(40):41866-41872.
    [37]KOSALA R,LUKAS S.Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin.Journal of Experimental Botany,2011,62(6):1961-1974.
    [38]BRAZIER-HICKS M,GERSHATER M,DIXON D,EDWARDS R.Substrate specificity and safener inducibility of the plant UDP-glucose-dependent family 1 glycosyltransferase super-family.Plant Biotechnology Journal,2017,16(1):337-348.
    [39]GOU M Y,SU N,ZHENG J,HUAI J L,WU G H,ZHAO J F,HE J G,TANG D Z,YANG S H,WANG G Y.An F-box gene,CPR30,functions as a negative regulator of the defense response in Arabidopsis.The Plant Journal,2009,60(5):757-770.
    [40]EKMAN D R,WOLFE N L,DEAN J F.Gene expression changes in Arabidopsis thaliana seedling roots exposed to the munition hexahydro-1,3,5-trinitro-1,3,5-triazine.Environmental Science&Technology,2005,39(16):6313-6320.
    [41]PLANER-FRIEDRICH B,KU?HNLENZ T,HALDER D,LOHMAYER R,WILSON N,RAFFERTY C,CLEMENS S.Thioarsenate toxicity and tolerance in the model system Arabidopsis thaliana.Environmental Science&Technology,2017,51(12):7187-7196.
    [42]RENAULT H,AMRANI A E,BERGER A,MOUILLE G,SOUBIGOU-TACONNAT L,BOUCHEREAU A,DELEU C.γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during Tribenuron stress in Arabidopsis,roots.Plant Cell&Environment,2013,36(5):1009-1018.
    [43]MUELLER S,HILBERT B,DUECKERSHOFF K,ROITSCH T,KRISCHKE M,MUELLER M J,BERGER S.General detoxification and stress responses are mediated by oxidized lipids through TGAtranscription factors in Arabidopsis.The Plant Cell,2008,20(3):768-785.
    [44]KOLUKISAOGLUü,BOVET L,KLEIN M,EGGMANN T,GEISLER M,WANKE D,MARTINOIA E,SCHULZ B.Family business:The multidrug-resistance related protein(MRP)ABCtransporter genes in Arabidopsis thaliana.Planta,2002,216(1):107-119.
    [45]WUEST S E,VIJVERBERG K,SCHMIDT A,WEISS M,GHEYSELINCK J,LOHR M,WELLMER F,RAHNENFüHRER J,VON MERING C,GROSSNIKLAUS U.Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes.Current Biology,2010,20(6):506-512.
    [46]LOEFFLER C,BERGER S,GUY A,DURAND T,BRINGMANN G,DREYER M,VON RAD U,DURNER J,MUELLER M J.B1-phytoprostanes trigger plant defense and detoxification responses.Plant Physiology,2005,137(1):328-340.
    [47]XU J,TIAN Y S,XING X J,PENG R H,ZHU B,GAO J J,YAO QH.Over-expression of At GSTU19 provides tolerance to Tribenuron,drought and methyl viologen stresses in Arabidopsis.Physiologia Plantarum,2015,156(2):164-175.
    [48]RYBEL B D,ADIBI M,BREDA A S,WENDRICH J R,SMIT M E,NOVáK O,YAMAGUCHI N,YOSHIDA S,VAN ISTERDAEL G,PALOVAARA J,NIJSSE B,BOEKSCHOTEN M V,HOOIVELD G,BEECKMAN T,WAGNER D,LJUNG K,FLECK C,WEIJERS D.Integration of growth and patterning during vascular tissue formation in Arabidopsis.Science,2014,345(6197):1255215.
    [49]CHRIST B,SüSSENBACHER I,MOSER S,BICHSEL N,EGERT A,MüLLER T,KR?UTLER B,H?RTENSTEINER S.Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis.The Plant Cell,2013,25(5):1868-1880.
    [50]FUJITA M,FUJITA Y,MARUYAMA K,SEKI M,HIRATSU K,OHME-TAKAGI M,TRAN L S,YAMAGUCHI-SHINOZAKI K,SHINOZAKI K.A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway.The Plant Journal,2004,39(6):863-876.
    [51]许贤.播娘蒿对苯磺隆抗性水平差异机理研究[D].北京:中国农业大学,2015.XU X.The mechanism of tribenuron-resistant level difference of flixweeds[D].Beijing:China Agricultural University,2015.(in Chinese)
    [52]DOWSETT C,JAMES T K,RAHMAN A.Plant-back safety of fodder beet(Beta vulgaris)following the application of tribenuronmethyl.2011,64:288.
    [53]张宝娟,赵惠贤,胡胜武.苯磺隆对甘蓝型油菜中双9号的杀雄效果.中国油料作物学报,2010,32(4):467-471.ZHANG B J,ZHAO H X,HU S W.Male sterile-inducing ability of tribenuron-methyl to rapeseed cultivar Zhongshuang 9.Chinese Journal of Oil Crop Sciences,2010,32(4):467-471.(in Chinese)
    [54]侯倩.重铬酸盐对两种作物的毒性效应研究[D].太原:山西大学,2012.HOU Q.Study on toxic effects of dichromate on two crop species[D].Taiyuan:Shanxi University,2012.(in Chinese)
    [55]胡华冉,刘浩,邓纲,杜光辉,徐云,刘飞虎.不同盐碱胁迫对大麻种子萌发和幼苗生长的影响.植物资源与环境学报,2015,24(4):61-68.HU H R,LIU H,DENG G,DU G H,XU Y,LIU F H.Effects of different salt-alkaline stresses on seed germination and seedling growth of Cannabis.Journal of Plant Resources and Environment,2015,24(4):61-68.(in Chinese)
    [56]YU Q,POWLES S.Metabolism-based herbicide resistance and cross-resistance in crop weeds:A threat to herbicide sustainability and global crop production.Plant Physiology,2014,166(3):1106.
    [57]DéLYE C,MENCHARI Y,GUILLEMIN J P,MATéJICEK A,MICHEL S,CAMILLERI C,CHAUVEL B.Status of black grass(Alopecurus myosuroides)resistance to acetyl-coenzyme A carboxylase inhibitors in France.Weed Research,2010,47(2):95-105.
    [58]PLANER-FRIEDRICH B,KüT H,HALDER D,LOHMAYER R,WILSON N,RAFFERTY C,CLEMENS S.Thioarsenate toxicity and tolerance in the model system Arabidopsis thaliana.Environmental Science&Technology,2017,51(12):7187-7196.
    [59]SIMINSZKY B,CORBIN F T,WARD E R,FLEISCHMANN T J,DEWEY R E.Expression of a soybean cytochrome P450 monooxygenase c DNA in Yeast and tobacco enhances the metabolism of phenylurea herbicides.Proceedings of the National Academy of Sciences of the United States of America,1999,96(4):1750.
    [60]DIDIERJEAN L,GONDET L,PERKINS R,LAU S M,SCHALLERH,O'KEEFE D P,WERCK-REICHHART D.Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1,a cytochrome P450 enzyme from jerusalem artichoke.Plant Physiology,2002,130(1):179-189.
    [61]XIANG W S,WANG X J,REN T R,JU X L.Expression of a wheat cytochrome P450 monooxygenase in yeast and its inhibition by glyphosate.Pest Management Science,2005,4(61):402-406.
    [62]YAMADA T,KAMBARA Y,IMAISHI H,OHKAWA H.Molecular cloning of novel cytochrome P450 species induced by chemical treatments in cultured tobacco cells.Pesticide Biochemistry&Physiology,2000,68(1):11-25.
    [63]CUMMINS I,BRAZIERHICKS M,STOBIECKI M,FRANSKI R,EDWARDS R.Selective disruption of wheat secondary metabolism by herbicide safeners.Phytochemistry,2006,67(16):1722-1730.
    [64]RIECHERS D E,VAUGHN K C,MOLIN W T.The role of plant glutathione s-transferases in herbicide metabolism//ACS Symposium,2005,216-232.
    [65]CUMMINS I,WORTLEY D J,SABBADIN F,HE Z,COXON C R,STRAKER H E,SELLARS J D,KNIGHT K,EDWARDS L,HUGHES D,KAUNDUN S S,HUTCHINGS S J,STEEL P G,EDWARDS R.Key role for a glutathione transferase in multipleherbicide resistance in grass weeds.Proceedings of the National Academy of Sciences of the United States of America,2013,110(15):5812-5817.
    [66]SAPPL P G,CARROLL A J,CLIFTON R,LISTER R,WHELAN J,HARVEY MILLAR A,SINGH K B.The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress.The Plant Journal,2009,58(1):53-68.
    [67]WAGNER U,EDWARDS R,DIXON D P,MAUCH F.Probing the diversity of the Arabidopsis glutathione S-transferase gene family.Plant Molecular Biology,2002,49(5):515-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700