用户名: 密码: 验证码:
不同施氮水平对兴安落叶松化学计量特征的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Long-term Nitrogen Deposition on the Stoichiometric Characteristics of Larix gmelinii
  • 作者:陈璐 ; 王庆贵 ; 闫国永 ; 邢亚娟
  • 英文作者:CHEN Lu;WANG Qinggui;YAN Guoyong;XING Yajuan;College of Agricultural Resource and Environment,Heilongjiang University;
  • 关键词:施N ; 生态化学计量比 ; 养分重吸收率 ; 兴安落叶松
  • 英文关键词:Application of N;;ecological stoichiometric ratio;;nutrient recovery rate;;Larix gmelinii
  • 中文刊名:SSGC
  • 英文刊名:Forest Engineering
  • 机构:黑龙江大学农业资源与环境学院;
  • 出版日期:2019-03-12 16:18
  • 出版单位:森林工程
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金资助(41773075; 41575137;31370494; 31170421)
  • 语种:中文;
  • 页:SSGC201902001
  • 页数:10
  • CN:02
  • ISSN:23-1388/S
  • 分类号:5-14
摘要
兴安落叶松为研究对象,在大兴安岭南瓮河自然保护区建立统一立地条件的4个氮(N)处理水平样地,分别为对照(CK,0g N/(m~2·a))、低N(LN,2. 5g N/(m~2·a))、中N(MN,5g N/(m~2·a))、高N(HN,7. 5g N/(m~2·a))处理。测定凋落叶、根和鲜叶在不同施N水平下C、N、P、K、Ca、Mg的含量。研究目的是为了阐明兴安落叶松叶和根各元素含量及化学计量比的分配格局,揭示叶片凋落前各元素的重吸收率,探讨各元素及其化学计量之间的关联以及对不同水平施N处理的响应。结果表明:①鲜叶、根、凋落叶C、N、P变化范围分别为393. 174~518. 362、4. 405~23. 963、0. 743~1. 671 mg/g,其中鲜叶C、P含量最高,根最低。②LN,MN,HN均显著提高了根的N含量,MN,HN显著提高了鲜叶N含量。植物养分含量在不同器官中存在显著差异。③植物叶片对Ca表现为富集状态,对N、P、K、Mg各元素则体现为重吸收状态。结论显示,鲜叶和根是影响兴安落叶松C、N、P及化学计量比的主导因子。兴安落叶松在N素充足的条件下,施N导致兴安落叶松对N和P奢侈吸收,提高了凋落叶的分解速率并加快了生态系统的养分循环。
        Taking Larix gmelinii from Greater Khingan Mountains as the research object,four nitrogen( N) treatment level plots with unified site conditions were established in Nanwenghe Nature Reserve of Greater Khingan Mountains,included contrast CK( CK,0 g N/( m~2·a)),low nitrogen( LN,2. 5 g N/( m~2·a)),middle nitrogen( MN,5 g N/( m~2·a)),high nitrogen( HN,7. 5 g N/( m~2·a)). The contents of C、N、P、K、Ca、Mg in leaves,roots and fresh leaves were determined under different N addition gradient.The purpose was to elucidate the aboveground organ leaves and underground organ roots of Larix gmelini. The distribution pattern of each element content and stoichiometry ratio revealed the heavy absorption rate of each element before leaf litter and discussed the relationship between each nutrient element and response to different levels of N application. The results showed that:( 1) C、N、P of fresh leaves,roots and littered leaves ranged from 393. 174-518. 362 mg/g,4. 405-23. 963 mg/g,and 0. 743-1. 671 mg/g. The range of C and P content in leaves was the highest,and the lowest in roots.( 2) LN,MN,HN significantly increased N content in roots,and MN,HN significantly increased N content in roots. There were significant differences in plant nutrient content in different organs.( 3)The plant leaves were enriched to Ca and reabsorbed to the elements. It conclude that the leaf and root were the main factors that affected the chemical measurement ratio and the C,N,P of Larix gmelinii. Under the condition of sufficient nitrogen,nitrogen deposition resulted in the extravagant absorption of N and P by Larix gmelinii,which could increase the decomposition rate of litter leaves and nutrient cycling in its ecosystem.
引文
[1] LIU X J,ZHANG Y,HAN W X,et al. Enhanced nitrogen deposi-tion over China[J]. Nature,2013,494(7438):459-462.
    [2] GALLOWAY J N,DENTENER F J,CAPONE D G,et al. Nitro-gen cycles:past,present,and future[J]. Biogeochemistry,2004,70(2):153-226.
    [3] GALLOWAY J N,TOWNSEND A R,ERISMAN J W,et al.Transformation of the nitrogen cycle:recent trends,questions,andpotential solutions[J]. Science,2008,320(5878):889-892.
    [4] STERNER R W,ELSER J J. Ecological stoichiometry:the biologyof elements from molecules to the biosphere[M]. Princeton:Prin-ceton University Press,2002.
    [5] ELSER J J,FAGAN W F,KERKHOFF A J,et al. Biological stoi-chiometry of plant production:metabolism,scaling and ecologicalresponse to global change[J]. New Phytologist,2010,186(3):593-608.
    [6] REICH P B,WRIGHT I J,CAVENDERBARES J,et al. The evo-lution of plant functional variation:traits,spectra,and strategies[J]. International Journal of Plant Sciences,2003,164(3):S143-S164.
    [7] AERTS R,CHAPIN F S. The mineral nutrition of wild plants revis-ited:a re-evaluation of processes and patterns[J]. Advances inEcological Research,1999,30(8):1-67.
    [8] AERTS R. Nutrient resorption from senescing leaves of perennials:are there general patterns?[J]. Journal of Ecology,1996,84(4):597-608.
    [9] WRIGHT I J,WESTOBY M. Nutrient concentration,resorptionand lifespan:leaf traits of Australian sclerophyll species[J]. Func-tional Ecology,2003,17(1):10-19.
    [10] WANG M,MURPHY M T,MOORE T R. Nutrient resorption oftwo evergreen shrubs in response to long-term fertilization in abog[J]. Oecologia,2014,174(2):365-377.
    [11] HODGE A. The plastic plant:root responses to heterogeneous sup-plies of nutrients[J]. New Phytologist,2004,162(1):9-24.
    [12] OLANDER L P,VITOUSEK P M. Regulation of soil phosphataseand chitinase activity by N and P availability[J]. Biogeochemis-try,2000,49(2):175-190.
    [13] BRAUN S,THOMAS V F,QUIRING R,et al. Does nitrogendeposition increase forest production? The role of phosphorus[J].Environmental Pollution,2010,158(6):2043-2052.
    [14] CAIRNEY J W G. Ectomycorrhizal fungi:the symbiotic route tothe root for phosphorus in forest soils[J]. Plant&Soil,2011,344(1/2):51-71.
    [15] ALDOUS A R. Nitrogen translocation in Sphagnum mosses:effectsof atmospheric nitrogen deposition[J]. New Phytologist,2002,156(2):241-253.
    [16] OSTONEN I,HELMISAARI H S,BORKEN W,et al. Fine rootforaging strategies in Norway spruce forests across a European cli-mate gradient[J]. Global Change Biology,2011,17(12):3620-3632.
    [17] YUAN Z Y,CHEN H Y H. Negative effects of fertilization onplant nutrient resorption[J]. Ecology,2016,96(2):373-380.
    [18] SEE C R,YANAI R D,FISK M C,et al. Soil nitrogen affectsphosphorus recycling:foliar resorption and plant-soil feedbacksin a northern hardwood forest[J]. Ecology,2015,96(9):2488-2498.
    [19] MARSCHNER H. Mineral nutrition of higher plants[M]. SaltLake City:Academic Press,2011.
    [20]贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报,2010,34(1):2-6.HE J S,HAN X G. Ecological stoichiometry:searching for unif-ying principles from individuals to ecosystems[J]. Chinese Journalof Plant Ecology,2010,34(1):2-6.
    [21] REICH P B. The world‐wide'fast-slow'plant economics spec-trum:a traits manifesto[J]. Journal of Ecology,2014,102(2):275-301.
    [22] PRIMICIA I,IMBERT J B,TRAVER M C,et al. Inter-specificcompetition and management modify the morphology,nutrient con-tent and resorption in Scots pine needles[J]. European Journal ofForest Research,2014,133(1):141-151.
    [23] KILLINGBECK K T. Nutrients in senesced leaves:keys to thesearch for potential resorption and resorption proficiency[J]. E-cology,1996,77(6):1716-1727.
    [24] NIKLAS K J,OWENS T,REICH P B,et al. Nitrogen/phosphor-us leaf stoichiometry and the scaling of plant growth[J]. EcologyLetters,2010,8(6):636-642.
    [25] HESSEN D O,? GREN G I,ANDERSON T R,et al. Carbon se-questration in ecosystems:the role of stoichiometry[J]. Ecology,2004,85(5):1179-1192.
    [26] KOERSELMAN W. The vegetation N:P ratio:a new tool to de-tect the nature of nutrient limitation[J]. Journal of Applied Ecolo-gy,1996,33(6):1441-1450.
    [27] ELSER J J,FAGAN W F,DENNO R F,et al. Nutritional con-straints in terrestrial and freshwater food webs[J]. Nature,2000,408(6812):578-580.
    [28] KERKHOFF A J,FAGAN W F,ELSER J J,et al. Phylogeneticand growth form variation in the scaling of nitrogen and phosphorusin the seed plants[J]. The American Naturalist,2006,168(4):E103-22.
    [29] MAGILL A H,ABER J D,BERNTSON G M,et al. Long-termnitrogen additions and nitrogen saturation in two temperate forests[J]. Ecosystems,2000,3(3):238-253.
    [30] MCNULTY S G,BOGGS J,ABER J D,et al. Red spruce ecosys-tem level changes following 14 years of chronic N fertilization[J].Forest Ecology&Management,2005,219(2):279-291.
    [31] ROWE E C,SMART S M,KENNEDY V H,et al. Nitrogen dep-osition increases the acquisition of phosphorus and potassium byheather Calluna vulgaris[J]. Environmental Pollution,2008,155(2):201-207.
    [32] REICH P B,OLEKSYN J. Global patterns of plant leaf N and Pin relation to temperature and latitude[J]. Proceedings of the Na-tional Academy of Sciences of the United States of America,2004,101(30):11001-11006.
    [33] TILMAN D. Constraints and tradeoffs:toward a predictive theoryof competition and succession[J]. Oikos,1990,58(1):3-15.
    [34] GSEWELL S,KOERSELMAN W. Variation in nitrogen andphosphorus concentrations of wetland plants[J]. Perspectives inPlant Ecology Evolution&Systematics,2002,5(1):37-61.
    [35] EVINER V T,III F S C. Functional matrix:a conceptual frame-work for predicting multiple plant effects on ecosystem processes[J]. Annual Review of Ecology Evolution&Systematics,2003,34(34):455-485.
    [36] GENG Y,WANG L,JIN D,et al. Alpine climate alters the rela-tionships between leaf and root morphological traits but not chemi-cal traits[J]. Oecologia,2014,175(2):445-455.
    [37]徐冰,程雨曦,甘慧洁,等.内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联[J.植物生态学报,2010,34(1):29-38.XU B,CHENG Y X,GAN H J,et al. Correlations between leafand fine root traits among and within species of typical temperategrassland in Xilin River Basin,Inner Mongolia[J]. Chinese Jour-nal of Plant Ecology,2010,34(1):29-38.
    [38] PREGITZER K S,DEFOREST J L,BURTON A J,et al. Fineroot architecture of nine North American trees[J]. EcologicalMonographs,2002,72(2):293-309.
    [39] GUO D,LI H,MITCHELL R J,et al. Fine root heterogeneity bybranch order:exploring the discrepancy in root turnover estimatesbetween minirhizotron and carbon isotopic methods[J]. New Phy-tologist,2008,177(2):443-456.
    [40] HAN W,FANG J,GUO D,et al. Leaf nitrogen and phosphorusstoichiometry across 753 terrestrial plant species in China[J].New Phytologist,2010,168(2):377-385.
    [41] HEERWAARDEN L M V,TOET S,AERTS R. Current measuresof nutrient resorption efficiency lead to a substantial underestima-tion of real resorption efficiency:facts and solutions[J]. Oikos,2010,101(3):664-669.
    [42] HAYES P,TURNER B L,LAMBERS H,et al. Foliar nutrient con-centrations and resorption efficiency in plants of contrasting nutrientacquisition strategies along a 2 million year dune chronosequence[J].Journal of Ecology,2014,102(2):396-410.
    [43] MAO R,ZENG D H,ZHANG X H,et al. Responses of plant nu-trient resorption to phosphorus addition in freshwater marsh ofNortheast China[J]. Scientific Reports,2015,5(5):8097.
    [44] ENOKI T,KAWAGUCHI H. Nitrogen resorption from needles of Pi-nus thunbergii,Parl. growing along a topographic gradient of soil nu-trient availability[J]. Ecological Research,2010,14(1):1-8.
    [45] CHAPIN F S,MOILANEN L. Nutritional controls over nitrogenand phosphorus resosrption from Alaskan birch leaves[J]. Ecolo-gy,1991,72(2):709-715.
    [46] LI X,LIU J,FAN J,et al. Combined effects of nitrogen additionand litter manipulation on nutrient resorption of Leymus chinensisin a semi-arid grassland of northern China[J]. Plant Biology,2015,17(1):9-15.
    [47] YOWHAN S,IMKYUN L,SOUNGRYOUL R. Nitrogen andphosphorus dynamics in foliage and twig of pitch pine and Japa-nese larch plantations in relation to fertilization[J]. Journal ofPlant Nutrition,2000,23(5):697-710.
    [48]赵琼,刘兴宇,胡亚林,等.氮添加对兴安落叶松养分分配和再吸收效率的影响[J].林业科学,2010,46(05):14-19.ZHAO Q,LIU X Y,HU Y L,et al. Effects of nitrogen additionon nutrient allocation and reuptake efficiency of Larix gmelini[J].Forestry Science,2010,46(5):14-19.
    [49] LX T,HAN X G. Nutrient resorption responses to water and ni-trogen amendment in semi-arid grassland of Inner Mongolia,Chi-na[J]. Plant&Soil,2010,327(1/2):481-491.
    [50] YU Q,ELSER J J,HE N,et al. Stoichiometric homeostasis ofvascular plants in the Inner Mongolia grassland[J]. Oecologia,2011,166(1):1-10.
    [51] CHAPIN F S,KEDROWSKI R A. Seasonal changes in nitrogenand phosphorus fractions and autumn retranslocation in evergreenand deciduous taiga trees[J]. Ecology,1983,64:376-391.
    [52] VERGUTZ L,MANZONI S,PORPORATO A,et al. Global re-sorption efficiencies and concentrations of carbon and nutrients inleaves of terrestrial plants[J]. Ecological Monographs,2012,82(2):205-220.
    [53] LIU C,LIU Y,GUO K,et al. Concentrations and resorption pat-terns of 13 nutrients in different plant functional types in the karstregion of south-western China[J]. Annals of Botany,2014,113(5):873-885.
    [54] KAZAKOU E,GARNIER E,NAVAS M,et al. Components ofnutrient residence time and the leaf economics spectrum in speciesfrom Mediterranean old-fields differing in successional status[J]. Functional Ecology,2010,21(2):235-245.
    [55] KOZOVITS A R,BUSTAMANTE M M C,GAROFALO C R,etal. Nutrient resorption and patterns of litter production and decom-position in a Neotropical Savanna[J]. Functional Ecology,2007,21(6):1034-1043.
    [56] KOBE R K,LEPCZYK C A,IYER M. Resorption efficiency de-creases with increasing green leaf nutrients in a global date set[J]. Ecology,2005,86(10):2780-2792.
    [57]周红艳,吴琴,陈明月,等.鄱阳湖沙山单叶蔓荆不同器官碳、氮、磷化学计量特征[J.植物生态学报,2017,41(4):461-470.ZHOU H Y,WU Q,CHEN M Y. Stoichiometric characteristics ofcarbon,nitrogen and phosphorus in different organs of Vitex mon-golicum in Sandy Mountain,Poyang Lake[J]. Journal of Plant E-cology,2017,41(4):461-470.
    [58]刘芳,葛江丽,施汉钰,等.西洋参地氮磷钾含量变化规律研究[J].林业科技,2017,42(6):19-21.LIU F,GE J L,SHI H Y,et al. Study on changing rule of nitro-gen,phosphorus and potassium content in Panax quinquefoliumfield[J]. Forestry Science&Technology,2017,42(6):19-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700