用户名: 密码: 验证码:
YG15硬质合金电化学腐蚀机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical Corrosion of YG15 Cemented Carbide
  • 作者:施远 ; 金洙吉 ; 冠楠 ; 刘作涛 ; 周忠正 ; 王泽北
  • 英文作者:SHI Yuan;JIN Zhuji;JIANG Guannan;LIU Zuotao;ZHOU Zhongzheng;WANG Zebei;School of Mechanical Engineering, Dalian University of Technology;
  • 关键词:碳化钨硬质合金 ; 电解磨削 ; 动电位 ; 恒电位 ; 电化学腐蚀
  • 英文关键词:tungsten carbide;;electrochemical grinding;;potentiodynamic curve;;potentiostatic curve;;electrochemical corrosion
  • 中文刊名:ZGFF
  • 英文刊名:Journal of Chinese Society for Corrosion and Protection
  • 机构:大连理工大学机械工程学院;
  • 出版日期:2019-06-15
  • 出版单位:中国腐蚀与防护学报
  • 年:2019
  • 期:v.39
  • 基金:国家重点基础研究发展计划(2015CB057304);; 基础科研科学挑战计划(JCKY2016212A506-0107和JCKY2016212A506-0103);; 国家创新研究群体科学基金(51621064)~~
  • 语种:中文;
  • 页:ZGFF201903006
  • 页数:7
  • CN:03
  • ISSN:21-1474/TG
  • 分类号:55-61
摘要
针对电解磨削加工YG15硬质合金中的电化学腐蚀现象,使用3 mol/L的NaNO_3电解液,采用动电位和恒电位腐蚀相结合的实验方法进行机理研究。结果表明,在NaNO_3电解液中YG15硬质合金的电化学腐蚀是WC和Co共同被氧化;且当阳极电位过高时,结合剂金属Co的溶解速率变大,材料表面生成的腐蚀产物与基体之间结合力较低,易发生脱落;同时产生电流波动现象,材料表面腐蚀严重。在实际加工中,应尽量避免阳极电位超过3.5 VAg/AgCl。通过EDS检测和XPS分析确定腐蚀产物成分为WO_3。选择合理的电压参数会对电解磨削中增大材料的去除率有较大的帮助。
        Cemented carbide is widely used in many fields because of its good properties. However,it is difficult to be processed with traditional machining methods. Electrochemical grinding is a kind of nontraditional method which combines electrochemical machining and mechanical grinding with great processing quality and high removal rate. In this paper, electrochemical corrosion mechanism of YG15 cemented carbide in electrolyte of 3 mol/L NaNO_3 is focused by means of potentiodynamic-and potentiostatic-curve measurements. Results show that the electrochemical corrosion of YG15 cemented carbide in NaNO_3 electrolyte is the result of co-oxidation corrosion of WC and Co. Corrosion phenomena vary a lot under different potentials. Moreover, when the anode potential is high, the dissolution rate of metal Co(which acts as the binder) increases, leading to the decreasing adhesion of the formed corrosion product scale to the substrate, which makes the corrosion product scale is prone to spall off. In addition, the corrosion dissolution of the substrate and the spall off for the corrosion product scale may cause the current oscillations on curves of corrosion current vs time, which leads to serious corrosion and even destruction of the substrate surface. Therefore, the anode potential should not excess 3.5 VAg/AgClso that to avoid the above mentioned harmful event during electrochemical grinding. The composition of the corrosion layer is determined to be tungsten oxides(which is mainly WO_3) by energy dispersive spectroscope and X-ray photoelectron spectroscope. Reasonable voltage parameters could help increase the removal rate of materials a lot in electrochemical grinding.
引文
[1] Padmakumar M, Guruprasath J, Achuthan P, et al. Investigation of phase structure of cobalt and its effect in WC-Co cemented carbides before and after deep cryogenic treatment[J]. Int. J. Refract. Met.Hard Mater., 2018, 74:87
    [2] Gao X J, Man P, Wang H D, et al. Development of WC cement prep‐aration technology[J]. Bull. Chin. Ceram. Soc., 2013, 32:71(高晓菊,满鹏,汪海东等.碳化钨硬质合金制备技术研究进展[J].硅酸盐通报, 2013, 32:71)
    [3] Li H S, Niu S, Zhang Q L, et al. Investigation of material removal in inner-jet electrochemical grinding of GH4169 alloy[J]. Sci.Rep., 2017, 7:3482
    [4] Xu Y, Gan W M, Zhu P X. Experimental research on NC electro‐chemical grinding for ruled surface of integral impeller[J]. Appl.Mech. Mater., 2012, 271/272:394
    [5] Tehrani A F, Atkinson J. Overcut in pulsed electrochemical grinding[J]. Proc. Inst. Mech. Eng., 2000, 214B:259
    [6] He Q X, Jin Z J, Jiang G N, et al. The investigation on electrochemi‐cal denatured layer of 304 stainless steel[J]. Mater. Manuf. Pro‐cess., 2018, 33:1661
    [7] Ye E K, Qu N S, Zhu D. Experimental investigation on electrochem‐ical grinding of GH4169[J]. Mach. Build. Autom., 2016, 45(6):24(叶而康,曲宁松,朱荻. GH4169电解磨削加工试验研究[J].机械制造与自动化, 2016, 45(6):24)
    [8] Zheng K L. Study on CNC electrolysis grinding of cobalt-base talide corrugated roller[J]. Manuf. Technol. Mach. Tool, 2007,(7):108(郑开陆.钴基碳化钨瓦楞辊数控电解磨削的研究[J].制造技术与机床, 2007,(7):108)
    [9] Qu N S, Zhang Q L, Fang X L, et al. Experimental investigation on electrochemical grinding of inconel 718[J]. Procedia CIRP, 2015,35:16
    [10] Sun Y A, Li X H, Zhang Y Q. Electrolytic grinding for hard metals[J]. Bearing, 2002,(2):18(孙永安,李县辉,张永乾.硬质合金的电解磨削加工[J].轴承,2002,(2):18)
    [11] Pang G B, Xin K K, Cai X, et al. Experimental study of surface to‐pography characteristics of YT15 cemented carbide by electro‐chemical machining[J]. J. Dalian Univ. Technol., 2017, 57:367(庞桂兵,辛开开,蔡晓等.电化学加工YT15硬质合金表面形貌特征实验研究[J].大连理工大学学报, 2017, 57:367)
    [12] Qin Q, Fang Y L, Li J X, et al. Analysis of influencing factors on electrochemical corrosion behavior of cemented carbides[J]. Rare Met. Cement Carbides, 2017, 45(5):74(秦琴,方云龙,李京筱等.硬质合金电化学腐蚀行为的影响因素分析[J].稀有金属与硬质合金, 2017, 45(5):74)
    [13] Wan Q L, Zhang L, Ke R X, et al. Effect of anions on electrochem‐ical corrosion behavior and corrosion mechanism of WC-Co ce‐mented carbide[J]. China Tungsten Ind., 2015, 30(1):61(万庆磊,张立,柯荣现等.阴离子介质对WC-10Co合金电化学腐蚀行为的影响[J].中国钨业, 2015, 30(1):61)
    [14] Natsu W, Kurahata D. Observation of workpiece surface in ECM process of WC alloy micro-pin with bipolar pulses[J]. Int. J. Elec‐tr. Mach., 2016, 21:31
    [15] Kellner F J J, Hildebrand H, Virtanen S. Effect of WC grain size on the corrosion behavior of WC-Co based hardmetals in alkaline solutions[J]. Int. J. Refract. Met. Hard Mater., 2009, 27:806
    [16] Hochstrasser S, Mueller Y, Latkoczy C, et al. Analytical character‐ization of the corrosion mechanisms of WC-Co by electrochemical methods and inductively coupled plasma mass spectroscopy[J].Corros. Sci., 2007, 49:2002
    [17] Levinger R, Malkin S. Electrochemical grinding of WC-Co ce‐mented carbides[J]. J. Eng. Ind., 1979, 101:285
    [18] Goto A, Nakata A, Saito N. Study on electrochemical machining of sintered carbide[J]. Procedia CIRP, 2016, 42:402
    [19] Li D. Electrochemical Theory[M]. 3rd Ed. Beijing:Beihang Uni‐versity Press, 2008:278(李荻.电化学原理[M].第3版.北京:北京航空航天大学出版社, 2008:278)
    [20] Gui Y, Gao Y. Progress of research on performance of passive films of stainless steels[J]. Spec. Steel, 2011, 32(3):20(桂艳,高岩.不锈钢表面钝化膜特性的研究进展[J].特殊钢,2011, 32(3):20)
    [21] Biloen P, Pott G T. X-ray photoelectron spectroscopy study of sup‐ported tungsten oxide[J]. J. Catal., 1973, 30:169
    [22] Katrib A, Hemming F, Wehrer P, et al. The multi-surface structure and catalytic properties of partially reduced WO3, WO2and WC+O2or W+O2as characterized by XPS[J]. J. Electron Spectrosc.Relat. Phenom. 1995, 76:195
    [23] Zhang J X, Zhang G Z, Zhang L P, et al. XPS study on WC bulk insitu synthesized through directly carbonized tungsten oxide by SPS[J]. Rare Met. Mater. Eng., 2006, 35:937(张久兴,张国珍,张利平等.氧化钨/碳SPS原位合成WC硬质合金的XPS研究[J].稀有金属材料与工程, 2006, 35:937)
    [24] Li J P, Ding C G, Li Y, et al. Effects of sintering temperatures on performance of WC-15%Co coarse-grained cemented carbide by sinter-HIP[J]. Cement Carbide, 2016, 33:33(李金普,丁存光,李一等.低压烧结度对YG15粗晶硬质合金性能的影响[J].硬质合金, 2016, 33:33)
    [25] Cao F G. Electrochemical Machining[M]. Beijing:Chemical In‐dustry Press, 2014:104(曹凤国.电化学加工[M].北京:化学工业出版社, 2014:104)
    [26] Chen K H, Zou D, Li Y X. Advance in the study of passivation and pseudopassivation behaviours of cemented carbides[J]. Cement Carbide, 2007, 24:181(陈康华,邹丹,李詠侠.硬质合金钝化与伪钝化行为的研究进展[J].硬质合金, 2007, 24:181)
    [27] Qun L. Electrolytic grinding of WC-Co cemented carbide[J].Shanghai Machine, 1965,(11):9(群力.电解磨削碳化钨-钴型硬质合金[J].上海机械, 1965,(11):9)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700