用户名: 密码: 验证码:
乌拉尔山阻塞高压和西伯利亚高压协同作用与东亚冬季风之间的联系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The relationship between Ural blocking,Siberia high and the East Asian winter monsoon
  • 作者:胡思乐 ; 李艳 ; 方从羲 ; 陈志宏
  • 英文作者:Hu Si-le;Li Yan;Fang Cong-xi;Chen Zhi-hong;State Key Laboratory of Loess and Quantemary Geology, Institute of Earth Environment,Chinese Academy of Sciences;College of Resources and Environment, University of Chinese Academy of Sciences;Key Laboratory of Semi-Arid Climate Change with the Ministry of Education,College of Atmospheric Sciences, Lanzhou University;Meteorological Observatory of the 95596 Force,The Chinese People's Liberation Army;
  • 关键词:乌拉尔山阻塞高压 ; 西伯利亚高压 ; 东亚冬季风 ; 气候突变
  • 英文关键词:Ural blocking;;Siberian high;;East Asian winter monsoon;;abrupt climate change
  • 中文刊名:LDZK
  • 英文刊名:Journal of Lanzhou University(Natural Sciences)
  • 机构:中国科学院地球环境研究所黄土与第四纪地质国家重点实验室;中国科学院大学资源与环境学院;兰州大学大气科学学院半干旱气候变化教育部重点实验室;中国人民解放军95596部队气象台;
  • 出版日期:2018-08-15
  • 出版单位:兰州大学学报(自然科学版)
  • 年:2018
  • 期:v.54;No.238
  • 基金:中央高校基本科研业务费专项资金项目(LZUJBKY-2016-16)
  • 语种:中文;
  • 页:LDZK201804003
  • 页数:13
  • CN:04
  • ISSN:62-1075/N
  • 分类号:18-30
摘要
利用1948-2016年美国气象环境预报中心(NCEP)和美国国家大气研究中心(NCAR)逐日再分析资料,选取乌拉尔山阻塞高压二维指数(UBI)、西伯利亚高压指数(SHI)和东亚冬季风综合指数(EAWMII),定量化的验证了乌拉尔山阻塞高压(UB)和西伯利亚高压(SH)发生的年代际变化特征,分析了该变化对东亚冬季风(EAWM)产生的影响.结果表明,冬季UBI、SHI和EAWMII两两之间呈显著相关.其中UBI与SHI之间30 a滑动相关除1988年以后UB和SH两者联系增强外,UBI、SHI和EAWMII的Mann-Kendall突变检验也表明,3者均出现了两次气候突变,第1次突变分别发生在1950-1960年、1960-1970年、1970-1980年;第2次突变发生在2000-2010年,但第2次突变可能不真.采用回归分析方法,研究了UB与EAWM年代际变化的影响,发现在UBI强的年份各要素场距平值对UBI的回归比UBI弱的年份更加明显;在UBI强的两个时段(1948-1985年,2001-2016年)各要素场距平回归值有所差异,后者呈现更加显著的变化,说明2000年以后UBI和EAWMII的相关性增加导致UB对EAWM的影响程度逐渐增强.利用合成分析验证了UB和SH协同作用与EAWM之间的联系.UBI高与SH强的年份,当东亚冬季表面温度呈现负异常时,在位势高度降低的同时,东亚大槽加深增强,中纬度300 hPa高空西风急流增强,有利于形成寒潮天气.在UBI低与SH弱的年份,各要素异常分布情况与上述基本相反.单一的UB和SH变化对东亚冬季各要素场虽然都有一定影响,两者的共同作用对东亚冬季表面温度、500 hP位势高度和300 hPa高空风场的影响更为显著.
        Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research reanalysis data from 1948 to 2016, the relationship between Ural blocking(UB), Siberia high(SH) and East Asian winter monsoon(EAWM) was investigated by using correlation, regression and synthesis analyses. In order to capture each signal well the UB index(UBI), SH index(SHI) and EAWM index(EAWMII) were used in this research. The result showed that there were significant correlations between these three indices, and the correlation coefficient between SHI and EAWMII, indicating that the SH pressure was the major factor affecting EAWM. A calculation of the sliding relation between UBI and SHI for 30 years showed that the correlation coefficient was greater than 0.3, while it had manifested a remarkable increase since 1988, the value being up to 0.5. The Mann-Kendall mutation test of UBI,SHI and EAWMII displayed that all of them had two abrupt climate changes in the whole period, and the first period for the three indices was from 1950 to 1960, from 1960 to 1970 and from 1970 to 1980, respectively. The second abrupt climate change period for each of them occurred after 2000, with all the three indices being changed in the same period. This reflected the decadal changes of UB, SH and EAWM systems, and led to extreme weather events frequently, especially in the past ten years. The regression values of each factor field in the two periods(from 1948 to 1985 and from 2001 to 2016) of UBI exhibited that the latter one revealed more significant changes, indicating that the influence of the UB on the EAWM was increasing gradually. Further analyses suggested that in the high UBI and strong SH years, the winter surface temperature in East Asia revealed negative anomalies, the geopotential height decreased and the East Asian Trough deepened respectively. At a high altitude of 300 hPa, westerly jet increased in mid latitude, which was favorable for the formation of cold wave weather. In the low UBI and weak SH years, the abnormal distribution was basically opposite to the above. Although the single change of UB or SH has certain effects on the winter elemental fields in East Asia, the combined effect of the two on the East Asian winter surface temperature, 500 hPa geopotential height and 300 hPa high latitude wind field are more pronounced.
引文
[1] Ding Yi-hui, Krishnamurti T N. Heat budget of the Siberian high and the winter monsoon[J]. Monthly Weather Review, 1987, 115(10):24-28.
    [2]丁一汇.东亚寒潮冷空气的传播和行星尺度作用[J].应用气象学报,1991,2(2):124-132.
    [3] Ding Yi-hui. Monsoons over China[J]. Advances in Atmospheric Sciences, 1994,11(2):252.
    [4] Zhang Yi, Sperber K R, Boyle J S. Climatology and interannual variation of the East Asian winter monsoon:results from the 1979 to 95 NCEP/NCAR reanalysis[J].Monthly Weather Review, 1997, 125(10):2605-2619.
    [5] Huang Rong-hui, Chen Ji-long, Huang Gang. Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China[J]. Advances in Atmospheric Sciences, 2007, 24(6):993-1023.
    [6] Wang L, Huang Rong-hui, Gu Lei, et al. Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity[J]. Journal of Climate, 2009,22(18):4860-4872.
    [7] Wang Hui-jun, Yu En-tao, Yang Song. An exceptionally heavy snowfall in Northeast china:large-scale circulation anomalies and hindcast of the NCAR WRF model[J].Meteorology and Atmospheric Physics, 2011, 113(1):11-25.
    [8] Sun Jian-qi, Wang Hui-jun, Yuan Wei, et al. Spatialtemporal features of intense snowfall events in China and their possible change[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D16):751-763.
    [9] Li Fei, Wang Hui-jun. Predictability of the East Asian winter monsoon interannual variability as indicated by the DEMETER CGCMS[J]. Advances in Atmospheric Sciences, 2012,29(3):441-454.
    [10] Chang C P, Lau K M. Short-term planetary-scale interactions over the tropics and midlatitudes during northern winter. Part 1:contrasts between active and inactive periods[J]. Monthly Weather Review, 2009, 110(8):1666-1672.
    [11]郭其蕴.东亚冬季风的变化与中国气温异常的关系[J].应用气象学报,1994, 5(2):218-225.
    [12]吴尚森,梁建茵.华南冬季异常冷月预测概念模型Ⅱ:大气环流、极冰、积雪等物理因子特征[J].热带气象学报,2000,16(4):289-296.
    [13]顾雷,魏科,黄荣辉.2008年1月我国严重低温雨雪冰冻灾害与东亚季风系统异常的关系[J].气候与环境研究,2008,13(4):405-418.
    [14] Wen Min, Yang Son, Kumar A, et al. An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008[J]. Monthly Weather Review, 2009, 137(3):1111-1131.
    [15]朱抱真,丁一汇,罗会邦.关于东亚大气环流和季风的研究[J].气象学报,1990,48(1):4-16.
    [16]梁必骐.热带气象学[M].广州:中山大学出版社,1990.
    [17]朱乾根.天气学原理和方法[M].北京:气象出版社,1981.
    [18]施能,朱乾根.近40年东亚夏季风及我国夏季大尺度天气气候异常[J].大气科学,1996, 20(5):575-583.
    [19]丁一汇,柳艳菊,梁苏洁,等.东亚冬季风的年代际变化及其与全球气候变化的可能联系[J].气象学报,2014, 72(5):835-852.
    [20]康丽华.东亚冬季风年际、年代际变化及其机理研究[D].北京:中国科学院大气物理研究所,2006.
    [21]丁一汇,王遵娅,宋亚芳,等.中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系[J].气象学报,2008, 66(5):808-825.
    [22]李艳,金荣花,王式功,等.1950-2008年影响中国天气的关键区阻塞高压统计特征[J].兰州大学学报:自然科学版,2010,46(3):47-55.
    [23]李艳,王式功,金荣花,等.我国南方低温雨雪冰冻灾害期间阻塞高压异常特征分析[J].高原气象,2012,31(1):94-101.
    [24]姜智娜,罗德海,刁一娜.行星尺度阻塞波和天气尺度波相互作用的数值模拟[J].中国海洋大学学报:自然科学版,2005,35(6):895-899.
    [25]吴静,刁一娜,庄绪宗.冬季乌拉尔山阻塞与东亚冬季风的联系分析[J].气候与环境研究,2016, 21(5):577-585.
    [26]陶诗言.阻塞形势破坏时期的东亚一次寒潮过程[J].气象学报,1957, 28(1):65-76.
    [27]陶诗言.十年来我国对东亚寒潮的研究[J].气象学报,1959,30(3):32-36.
    [28] Trenberth K E, Hurrell J W. Decadal atmosphere-ocean variations in the Pacific[J]. Climate Dynamics, 1994,9(6):303-319.
    [29] Nakamura H, Lin G, Yamagata T. Decadal climate variability in the North Pacific during the recent decades[J].Bulletin of the American Meteorological Society, 1997,78(10):2215-2225.
    [30] Wang Lin, Chen Wen, Zhou Wen, et al. Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate[J]. International Journal of Climatology,2009,30(1):153-158.
    [31]陈文,魏科,王林,等.东亚冬季风气候变异和机理以及平流层过程的影响[J].大气科学,2013, 37(2):425-438.
    [32] Liu Qing. On the definition and persistence of blocking[J]. Tellus A:Dynamic Meteorology and Oceanography, 1994, 46(3):286-298.
    [33] Scherrer S C, Croci-Maspoli M, Schwierz C, et al.Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region[J]. International Journal of Climatology, 2006,26(2):233-249.
    [34] Davini P, Cagnazzo C, Gualdi S, et al. Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking[J]. Journal of Climate, 2012, 25(19):6496-6509.
    [35]龚道溢,王绍武.西伯利亚高压的长期变化及全球变暖可能影响的研究[J].地理学报,1999, 54(2):125-133.
    [36]蓝柳茹.西伯利亚高压的年际和年代际异常特征及其对中国冬季气温的影响[D].南京:南京信息工程大学图书馆,2016.
    [37]贺圣平,王会军.东亚冬季风综合指数及其表达的东亚冬季风年际变化特征[J].大气科学,2012, 36(3):523-538.
    [38]邵鹏程,李栋梁.东亚冬季风指数的分类和比较[J].气象科学,2012,32(2):226-235.
    [39]张自银,龚道溢,胡淼,等.多种东亚冬季风指数及其与中国东部气候关系的比较[J].地理研究,2012,31(6):987-1003.
    [40]刘毓赟,陈文.北半球冬季欧亚遥相关型的变化特征及其对我国气候的影响[J].大气科学,2012, 36(2):423-432.
    [41]林学椿.统计天气预报中相关系数的不稳定性问题[J].大气科学,1978, 2(1):55-63.
    [42]叶培龙,李艳,王式功,等.北半球不同强度、生命期阻塞高压的变化特征及其对温度的影响[J].兰州大学学报:自然科学版,2015, 51(5):639-645.
    [43]李维京,李怡,陈丽娟,等.我国冬季气温与影响因子关系的年代际变化[J].应用气象学报,2013, 24(4):385-396.
    [44] Huang Rong-hui, Chen Ji-long, Wang Lin, et al. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system[J].Advances in Atmospheric Sciences, 2012, 29(5):910-942.
    [45]龚道溢,王绍武.大气环流因子对北半球气温变化影响的研究[J].地理研究,1999, 18(1):31-38.
    [46]龚道溢,朱锦红,王绍武.西伯利亚高压对亚洲大陆的气候影响分析[J].高原气象,2002,21(1):8-14.
    [47]朱安豹,马敏劲,杨秀梅,等.近63年中国东部冬季气温异常的时空分布特征[J].兰州大学学报:自然科学版,2016, 52(1):75-83.
    [48]徐建军,朱乾根,周铁汉,等.近百年东亚冬季风的突变性和周期性[J].应用气象学报,1999, 10(1):1-8.
    [49]王会军,姜大膀.一个新的东亚冬季风强度指数及其强弱变化之大气环流场差异[J].第四纪研究,2004,24(1):19-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700