用户名: 密码: 验证码:
基于ADAMS仿真的自主水下机器人入坞碰撞分析与导向结构优化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:AUV Underwater Docking Collision Analysis and Guidance Structure Optimization Based on ADAMS Simulation
  • 作者:国婧倩 ; 郑荣 ; 吕厚权
  • 英文作者:GUO Jingqian;ZHENG Rong;Lü Houquan;State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Science;Institute for Robotics and Intelligent Manufacturing,Chinese Academy of Science;School of Mechanical Engineering and Automation,Northeastern University;University of Chinese Academy of Science;
  • 关键词:自主水下机器人 ; 入坞碰撞 ; ADAMS仿真 ; 导向结构 ; 试验验证
  • 英文关键词:autonomous underwater vehicle;;docking collision;;ADAMS simulation;;guiding structure;;test verification
  • 中文刊名:BIGO
  • 英文刊名:Acta Armamentarii
  • 机构:中国科学院沈阳自动化研究所机器人学国家重点实验室;中国科学院机器人与智能制造创新研究院;东北大学机械工程与自动化学院;中国科学院大学;
  • 出版日期:2019-05-15
  • 出版单位:兵工学报
  • 年:2019
  • 期:v.40;No.266
  • 基金:中国科学院战略性先导科技专项项目(XDA13030204)
  • 语种:中文;
  • 页:BIGO201905019
  • 页数:10
  • CN:05
  • ISSN:11-2176/TJ
  • 分类号:165-174
摘要
结合自主水下机器人(AUV)于千岛湖水下对接试验,对自主研制的水下对接装置导向性能进行研究。在分析AUV水下受力状况和接触碰撞参数基础上,建立AUV入坞碰撞过程的ADAMS物理仿真模型,通过比较试验结果和仿真结果中AUV姿态和前向速度的变化,验证仿真模型的有效性。从AUV入坞偏距和AUV入坞夹角两方面分别探讨凸形罩、锥形罩和凹形罩3种典型导向结构的导向能力,分析对比仿真结果,对导向罩母线曲率进行改进设计与优化、得到S形罩。多次仿真发现:在AUV入坞姿态相同条件下,S形罩能够调整的AUV入坞偏距最大为100 cm,比凸形罩提高20 cm; S形罩能够调整的AUV入坞偏角最大为22°,比凸形罩降低1°;但S形罩产生的碰撞力和AUV入坞时间都有所下降,调整AUV运动趋势效果明显改善。在水池对凸形罩和S形罩分别进行AUV入坞偏距和AUV入坞夹角两方面试验,结果表明S形罩的导向性能有明显改善。
        The guiding performance of a self-developed underwater docking device is analyzed based on the docking test of autonomous underwater vehicle( AUV) in Qiandao Lake. An AUV docking collision model is established using the software ADAMS based on the hydrodynamic characteristics of AUV and contact impact parameters. The effectiveness of the proposed model is verified by comparing the attitudes and velocities of AUV in the test and simulated results. The guiding capabilities of convex,conical and concave guiding covers are discussed in terms of the offset distance and included angle of AUV docking.The generatrix curvature of guiding cover was optimized to design an improved S-shaped guiding cover by analyzing the simulated results. It is found that,under the same conditions of AUV docking attitude,the maximum AUV docking offset distance adjusted by the improved S-shaped guiding cover is 100 cm,which is 20 cm longer than that adjusted by convex guiding cover,and the maximum AUV docking angle adjusted by the improved S-shaped guiding cover is 22°,which is 1° lower than that adjusted by convex guiding cover. But the impact force generated by S-shaped guiding cover and the AUV docking time both are decreased,and the effect of adjusting AUV movement trend is obviously improved. The guiding performances of the improved S-shaped cover and the convex guiding cover were validated through the AUV docking tests. The test results show that the guiding performance of the improved S-shaped guiding cover is dramatically improved.
引文
[1]燕奎臣,吴利红. AUV水下对接关键技术研究[J].机器人,2007,29(3):267-273.YAN K C,WU L H. A survey on the key technologies for underwater AUV docking[J]. Robot,2007,29(3):267-273.(in Chinese)
    [2]张竺英,王棣棠,刘大路.自治式水下机器人回收系统的研究与设计[J].机器人,1995,17(6):349-351.ZHANG Z Y,WANG D T,LIU D L. The researching and designing of the recovering system for autonomous underwater vehicles[J]. Robot,1995,17(6):349-351.(in Chinese)
    [3] SINGH H,BELLINGHAM J G,HOVER F,et al. Docking for an autonomous ocean sampling network[J]. IEEE Journal of Oceanic Engineering,2001,26(4):498-513.
    [4]于开洋,徐凤安,王棣棠,等.“探索者”号无缆水下机器人水下回收系统的设计与应用[J].机器人,1996,18(3):179-184.YU K Y,XU F A,WANG D T,et al. Design and application of the underwater recovering for the untethered underwater vehicle“Explorer”[J]. Robot,1996,18(3):179-184.(in Chinese)
    [5] ALLEN B,STOKEY R,AUSTIN T,et al. REMUS:a small,low cost AUV; system description,field trials,and performance results[C]∥Proceedings of OCEANS'97 MTS/IEEE Conference.Halifax,NS,Canada:IEEE,1997:994-1000.
    [6] STOKEY R,PURCELL M,FORRESTER N,et al. A docking system for REMUS,an autonomous underwater vehicle[C]∥Proceedings of OCEANS'97 MTS/IEEE Conference. Halifax,NS,Canada:IEEE,1997:1132-1136.
    [7] STOKEY R,ALLEN B,AUSTIN T,et al. Enabling technologies for REMUS docking:an integral component of an autonomous ocean sampling network[J]. IEEE Journal of Oceanic Engineering,2001,26(4):487-497.
    [8] ALLEN B,AUSTIN T,FORRESTER N,et al. Autonomous docking demonstrations with enhanced REMUS technology[C]∥Proceedings of OCEANS'06 MTS/IEEE Conference. Boston,MA,US:IEEE,2006:1-6.
    [9] HOBSON B W,MCEWEN R S,ERICKSON J,et al. The development and ocean testing of an AUV docking station for a 21-inch AUV[C]∥Proceedings of OCEANS'07 MTS/IEEE Conference.Vancouver,BC,Canada:IEEE,2007:1-6.
    [10] ROBERT S,MCEWEN R S. Docking control system for a 54-cm-diameter(21-in)AUV[J]. IEEE Journal of Oceanic Engineering,2008,33(4):550-562.
    [11] PALOMERAS N,VALLICROSA G,MALLIOS A,et al. AUV homing and docking for remote operations[J]. Ocean Engineering,2018,154:106-120.
    [12] VANDAVASI B N J, ARUNACHALAM U, NARAYANASWAMY V,et al. Concept and testing of an electromagnetic homing guidance system for autonomous underwater vehicles[J].Applied Ocean Research,2018,73:149-159.
    [13]张波.自治式水下机器人水下对接装置研究[D].哈尔滨:哈尔滨工程大学,2013.ZHANG B. Research on AUV underwater docking device[D].Harbin:Harbin Engineering University,2013.(in Chinese)
    [14]李开飞. AUV水下对接关键技术及对接碰撞问题研究[D].哈尔滨:哈尔滨工程大学,2017.LI K F. Research on AUV underwater docking device[D]. Harbin:Harbin Engineering University,2017.(in Chinese)
    [15] LI D J,CHEN Y H,SHI J G,et al. Autonomous underwater vehicle docking system for cabled ocean observatory network[J]. Ocean Engineering,2015,109:127-134.
    [16] ZHANG T,LI D J,YANG C. Study on impact process of AUV underwater docking with a cone-shaped dock[J]. Ocean Engineering,2017,130:176-187.
    [17] CIRCLE B N. Underwater mobile docking of autonomous underwater vehicles[C]∥Proceedings of OCEANS'12 MTS/IEEE Conference. Hampton Roads,VA,US:IEEE,2012:1-15.
    [18]孟令帅,林杨,谷海涛,等.回转形AUV水下通用对接装置的设计与实现[J].工程设计学报,2017,24(4):387-394.MENG L S,LIN Y,GU H T,et al. Design and implementation of a general docking device for revolving AUV[J]. Chinese Journal of Engineering Design,2017,24(4):387-394.(in Chinese)
    [19] WANG S,SUN X J,WANG Y H,et al. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider[J]. China Ocean Engineering,2011,25(1):97-112.
    [20] MINORSKY V U. An analysis of ship collision to protection of nuclear powered plant[J]. Journal of Ship Research,1959,3(2):1-4.
    [21] PETERSEN M J. Dynamic of ship collisions[J]. Ocean Engineering,1982,9(4):295-329.
    [22] LANKARANI H M,NIKRAVESH P E. A contact force model with hysteresis damping for impact analysis of multibody systems[J]. Journal of Mechanical Design,1990,112(3):369-376.
    [23]李强.新型类锥杆式对接机构的碰撞过程分析[D].长沙:国防科学技术大学,2009.LI Q. Collision analysis of a new quasi probe-cone docking mechanism[D]. Changsha:National University of Defense Technology,2009.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700