用户名: 密码: 验证码:
梯度温度场中多胞材料牺牲层的抗冲击分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anti-impact Analysis of Sacrificial Claddings of Cellular Material with Temperature Gradient
  • 作者:李志斌 ; 卢芳云
  • 英文作者:LI Zhi-bin;LU Fang-yun;College of Science,National University of Defense Technology;
  • 关键词:固体力学 ; 多胞材料牺牲层 ; 梯度温度场 ; 耐撞性 ; 冲击波传播 ; 优化设计
  • 英文关键词:solid mechanics;;cellular material sacrificial cladding;;temperature gradient;;crashworthiness;;shock wave propagation;;optimization design
  • 中文刊名:BIGO
  • 英文刊名:Acta Armamentarii
  • 机构:国防科技大学理学院;
  • 出版日期:2017-12-15
  • 出版单位:兵工学报
  • 年:2017
  • 期:v.38;No.249
  • 基金:国家自然科学基金项目(11402299)
  • 语种:中文;
  • 页:BIGO201712021
  • 页数:9
  • CN:12
  • ISSN:11-2176/TJ
  • 分类号:178-186
摘要
针对多胞材料作为牺牲覆盖层防护结构来保护主体结构经受爆炸/冲击载荷的典型应用,分析了梯度温度场中多胞牺牲层的抗冲击行为。基于多胞材料的刚性-理想塑性-锁定模型,建立了梯度温度场中多胞牺牲层的一维冲击波模型,揭示了冲击波在多胞牺牲层中的传播特性,并获得了多胞牺牲层临界厚度和临界冲击速度随梯度温度场分布的依赖关系。通过有限元方法采用基于实验数据的多胞材料刚性-幂指数硬化模型验证了理论模型的有效性。推导了梯度温度场多胞牺牲层的临界厚度、临界冲击速度以及端面载荷历史等与温度场分布的关系,给出了给定长度的多胞牺牲层临界冲击速度与牺牲层端面温差的关系。结果表明,对于已设计完成的闭孔多胞材料牺牲覆盖层结构,当支撑端温度不变、冲击端温度升高时,结构容许的临界冲击速度是线性降低的。
        Considering the applications of cellular materials as the sacrificial claddings in protecting the major structure from impact/blast load,a design method of cellular foam claddings with temperature gradient under high initial velocity impacts is presented.An one-dimensional model for the compaction of cellular foam claddings with temperature gradient is developed for the striker-rod impact scenario based on the rigid-perfectly plastic-locking(R-P-P-L) model.The predictions of the proposed model are compared to FE simulations by using the realistic R-PLH material model based on the actual experimentally derived stress-strain curves.The predictions of the dependence of critical length,critical impact velocity and impact force of the cellular foam rod with temperature gradient on the temperature distribution and the relation between critical impact velocity of an aluminum foam rod with a given length and the temperature contrast at its two ends are compared well with the numerical simulations results.
引文
[1]Ashby M F,Evans T,Fleck N A,et.al.Metal foams:a design guide[M].the Nethlands:Elsevier Science,2000.
    [2]Guruprasad S,Mukherjee A.Layered sacrificial claddings under blast loading PartⅠ-analytical studies[J].International Journal of Impact Engineering,2000,24(9):957-973.
    [3]蔡正宇,丁圆圆,王士龙,等.梯度多胞牺牲层的抗爆炸分析[J].爆炸与冲击,2017,37(3):396-404.CAI Zheng-yu,DING Yuan-yuan,WANG Shi-long,et al.Antiblast analysis of graded cellular sacrificial cladding[J].Explosion and Shock Waves,2017,37(3):396-404.(in Chinese)
    [4]Hanssen A G,Enstock L,Langseth M.Close-range blast loading of aluminium foam panels[J].International Journal of Impact Engineering,2002,27(6):593-618.
    [5]Karagiozova D,Langdon G S,Nurick G N.Blast attenuation in Cymat foam core sacrificial claddings[J].International Journal of Mechanical Sciences,2010,52(5):758-776.
    [6]宋延泽,王志华,赵隆茂,等.泡沫金属子弹冲击下多孔金属夹芯板动力响应研究[J].兵工学报,2011,32(1):1-7.SONG Yan-ze,WANG Zhi-hua,ZHAO Long-mao,et al.Investigation on dynamic response of sandwich plate to the impact of cellular metallic projectile[J].Acta Armamentarii,2011,32(1):1-7.(in Chinese)
    [7]Reid S R,Peng C.Dynamic uniaxial crushing of wood[J].International Journal of Impact Engineering,1997,19(5/6):531-570.
    [8]Li Z B,Zheng Z J,Yu J L,et al.Spherical indentation of closedcell aluminum foams:an empirical force-depth relation[J].Materials Science and Engineering:A,2014,618:433-437.
    [9]Tan P J,Reid S R,Harrigan J J,et al.Dynamic compressive strength properties of aluminium foams.PartⅡ-‘shock’theory and comparison with experimental data and numerical models[J].Journal of the Mechanics and Physics of Solids,2005,53(10):2206-2230.
    [10]Zheng Z,Liu Y,Yu J,et al.Dynamic crushing of cellular materials:continuum-based wave models for the transitional and shock modes[J].International Journal of Impact Engineering,2012,42(4):66-79.
    [11]王涛,余文力,秦庆华,等.爆炸载荷下泡沫铝夹芯板变形与破坏模式的实验研究[J].兵工学报,2016,37(8):1456-1463.WANG Tao,YU Wen-li,QIN Qing-hua,et al.Experimental investigation into deformation and damage patterns of sandwich plates with aluminum foam core subjected to blast loading[J].Acta Armamentarii,2016,37(8):1456-1463.(in Chinese)
    [12]Li Q M,Meng H.Attenuation or enhancement-a one-dimensional analysis on shock transmission in the solid phase of a cellular material[J].International Journal of Impact Engineering,2002,27(10):1049-1065.
    [13]Cooper G J,Townend D J,Cater S R,et al.The role of stress waves in thoracic visceral injury from blast loading:modification of stress transmission by foams and high-density materials[J].Journal of Biomech,1991,24(5):273-285.
    [14]张健,赵桂平,卢天健.泡沫金属在冲击载荷下的动态压缩行为[J].爆炸与冲击,2014,34(3):278-284.ZHANG Jian,ZHAO Gui-ping,LU Tian-jian.High speed compression behaviour of metallic cellular materials under impact loading[J].Explosion and Shock Waves,2014,34(3):278-284.(in Chinese)
    [15]Harrigan J J,Reid S R,Seyed Yaghoubi A.The correct analysis of shocks in a cellular material[J].International Journal of Impact Engineering,2010,37(8):918-927.
    [16]Li Z B,Zheng Z J,Yu J L,et al.Effect of temperature on the indentation behavior of closed-cell aluminum foam[J].Materials Science and Engineering:A,2012,550(31):222-226.
    [17]Li Z B,Zheng Z J,Yu J L,et al.Deformation and failure mechanisms of sandwich beams under three-point bending at elevated temperatures[J].Composite Structures,2014,111:285-290.
    [18]Li Z B,Chen X G,Jiang B H,et al.Local indentation of aluminum foam core sandwich beams at elevated temperatures[J].Composite Structures,2016,145:142-148.
    [19]Hayashi M.Thermal fatigue behavior of thin-walled cylindrical carbon steel specimens in simulated BWR environment[J].Nuclear Engineering and Design,1998,184:123-133.
    [20]Shah Q H,Homma H.Fracture criterion of materials subjected to temperature gradient[J].International Journal of Pressure Vessels and Piping,1995,62(1):59-68.
    [21]Kim K S,Van Stone R H.Crack growth under thermo-mechanical and temperature gradient loads[J].Engineering Fracture Mechanics,1997,58(1/2):133-147.
    [22]Karagiozova D,Langdon G S,Nurick G N.Propagation of compaction waves in metal foams exhibiting strain hardening[J].International Journal of Solids and Structures,2012,49(19/20):2763-2777.
    [23]Zheng Z J,Liu Y D,Yu J L,et al.Dynamic crushing of cellular materials:Continuum-based wave models for the transitional and shock modes[J].International Journal of Impact Engineering,2012,42(4):66-79.
    [24]Pattofatto S,Elnasri I,Zhao H,et al.Shock enhancement of cellular structures under impact loading:Part II analysis[J].Journal of the Mechanics and Physics of Solids,2007,55(12):2672-2686.
    [25]Zheng Z,Yu J,Wang C,et al.Dynamic crushing of cellular materials:a unified framework of plastic shock wave models[J].International Journal of Impact Engineering,2013,53(1):29-43.
    [26]Liao S,Zheng Z,Yu J.Dynamic crushing of 2D cellular structures:local strain field and shock wave velocity[J].International Journal of Impact Engineering,2013,57(1):7-16.
    [27]Harrigan J J,Reid S R,Peng C.Inertia effects in impact energy absorbing materials and structures[J].International Journal of Impact Engineering,1999,22(9/10):955-979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700