用户名: 密码: 验证码:
液氧/甲烷发动机变截面冷却通道传热数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical study of heat transfer in variable cross-section cooling channels of LOX/methane rocket engines
  • 作者:张明 ; 孙冰
  • 英文作者:ZHANG Ming;SUN Bing;School of Astronautics, Beihang University;
  • 关键词:甲烷 ; 跨临界 ; 耦合传热 ; 火箭发动机 ; 再生冷却 ; 突缩突扩
  • 英文关键词:methane;;transcritical;;coupled heat transfer;;rocket engine;;regenerative cooling;;sudden contraction/sudden expansion
  • 中文刊名:HJTJ
  • 英文刊名:Journal of Rocket Propulsion
  • 机构:北京航空航天大学宇航学院;
  • 出版日期:2019-04-15
  • 出版单位:火箭推进
  • 年:2019
  • 期:v.45;No.228
  • 语种:中文;
  • 页:HJTJ201902002
  • 页数:7
  • CN:02
  • ISSN:61-1436/V
  • 分类号:12-18
摘要
为提高液体火箭发动机推力室再生冷却通道的冷却效率,对液氧/甲烷发动机推力室变截面冷却通道的耦合传热进行数值模拟,探究了冷却通道的高宽比对跨临界甲烷的湍流流动和对流传热的影响。燃气-冷却通道-冷却剂的三维耦合计算采用一种改进的迭代耦合方法。研究结果表明:在冷却通道横截面积不变时,增大冷却通道高宽比可以降低喉部燃气侧壁面最高温度。冷却通道的高宽比越大,冷却剂压力损失越大。但过大的高宽比会导致压力损失急剧增大,且进一步降低喉部壁面最高温度的效果不明显。燃气侧壁面温度在变截面冷却通道的突扩突缩处出现局部下降,且下降幅度会随着高宽比的减小而增加。大高宽比冷却通道中,喉部侧壁面附近发生传热恶化的范围有限,主要在肋侧壁面附近的下半部分。研究结果为推力室变截面再生冷却通道的设计提供了参考。
        In order to improve the cooling efficiency of regenerative cooling channels of liquid rocket engine thrust chamber, the numerical simulation of the coupled heat transfer in the variable cross-section cooling channels of the LOX/methane engine thrust chamber was carried out to investigate the effects of the aspect ratio on the turbulent flow and convective heat transfer of the transcritical methane in this paper.An improved iterative coupling method was used for the three-dimensional coupling calculation of the hot gas, the cooling channel and the coolant domain.The research results show that when the cooling channel cross-sectional area is constant, increasing the aspect ratio of the cooling channel can reduce the maximum hot-gas-side wall temperature at the throat.The larger the cooling channel aspect ratio is, the greater the coolant pressure loss is.However, excessive aspect ratio will lead to a sharp increase in pressure loss, and the effect of further reducing the maximum temperature of the hot-gas-side wall at the throat is not obvious.The hot-gas-side wall temperature drops at the sudden contraction/sudden expansion structures of variable cross-section cooling channel.And the magnitude of the decrease increases as the aspect ratio decreases.In the large aspect ratio cooling channel, the area where the heat transfer deterioration occurs near the lateral wall surface at the throat is limited, mainly in the lower half of the rib side wall.This paper provides a reference for the design of variable cross-section regenerative cooling channels of the thrust chamber.
引文
[1] KLEPIKOV I A,KATORGIN B I,CHVANOV V K.The new generation of rocket engines,operating by ecologically safe propellant “liquid oxygen and liquefied natural gas(methane)”[J].Acta Astronautica,1997,41(4):209-217.
    [2] CROCKER A M,PEERY S D.System sensitivity studies of a LOX/methane expander cycle rocket engine:AIAA 1998-3674[R].Cleveland:AIAA,1998.
    [3] PEMPIE P,FROEHLICH T,VERNIN H.LOX/methane and LOX/kerosene high thrust engine trade-off:AIAA 2001-3542[R].Salt Lake City:AIAA,2001.
    [4] BROWN C D.Conceptual investigations for a methane-fueled expander rocket engine:AIAA 2004-4210[R].Fort Lauderdale:AIAA,2004.
    [5] 张忠利,张蒙正,周立新.液体火箭发动机热防护[M].北京:国防工业出版社,2016.
    [6] 王彦红,李素芬.方形通道内超临界碳氢燃料传热恶化数值研究[J].推进技术,2016,37(12):2377-2384.
    [7]靳书武,武锦涛,银建中.水平圆管内超临界甲烷对流换热数值模拟[J].应用科技,2015,42(5):67-71.
    [8]李斌,张小平,高玉闪.我国可重复使用液体火箭发动机发展的思考[J].火箭推进,2017,43(1):1-7.LI Bin,ZHANG Xiaoping,GAO Yushan.Consideration on development of reusable liquid rocket engine in China[J].Journal of Rocket Propulsion,2017,43(1):1-7.
    [9] 陈尊敬,王雷雷,孟华.考虑发动机冷却通道固壁内耦合导热影响的低温甲烷超临界压力传热研究[J].航空学报,2013,34(1):8-18.
    [10] WADEL M F.Comparison of high aspect ratio cooling channel designs for a rocket combustion chamber:AIAA 1997-2913[R].Seattle:AIAA,1997.
    [11] 孙冰,宋佳文.液氧甲烷发动机台阶型冷却通道的耦合传热特性[J].航空动力学报,2016,31(12):2972-2978.
    [12] ULAS A,BOYSAN E.Numerical analysis of regenerative cooling in liquid propellant rocket engines[J].Aerospace Science and Technology,2013,24(1):187-197.
    [13] PIZZARELLI M,NASUTI F,MARCELLO O.Flow analysis of transcritical methane in rectangular cooling channels:AIAA 2008-4556[R].Hartford:AIAA,2008.
    [14] MAGNUSSEN B F.AIAA 81-3757[R].Saint Louis:AIAA,1981.
    [15] SONG J W,SUN B.Coupled numerical simulation of combustion and regenerative cooling in LOX/Methane rocket engines[J].Applied Thermal Engineering,2016,106:762-773.
    [16] 康玉东,孙冰.燃气非平衡流再生冷却流动传热数值模拟[J].推进技术,2011,32(1):119-124.
    [17] ELY J F,HANLEY H J.Predicition of transport-properties 1.viscosity of fluids and mixtures[J].Industrial & Engineering Chemistry Fundamentals,1981,20(4):323-332.
    [18] POLING B E,PRAUSNITZ J M,CONNELL J P.The properties of gases and liquids[M].Boston:McGraw-Hill,2001.
    [19] ESPOSITO J J,ZABORA R F.Thrust chamber life prediction.volume 1:mechanical and physical properties of high performance rocket nozzle materials:NASA-CR-134806[R].Seattle:NASA,1975.
    [20] KANG Y,SUN B.Numerical simulation of liquid rocket engine thrust chamber regenerative cooling[J].Journal of Thermophysics and Heat Transfer,2011,25(1):155-164.
    [21] PIZZARELLI M,URBANO A,NASUTI F.Nunrical analysis of deteriortion in heat transfer to near-critical rocket propellants[J].Numerical Heat Transfer Part A-Applications,2010,57(5):297-314.
    [22] SATO T,SUGIYAMA M,ITOH K,et al.Structural difference between liquid like and gaslike phases in supercritical fluid[J].Physical Review E,Statistical,Nonlinear,and soft Matter Physics,2008,78(5):1-9.
    [23] URBANO A,NASUTI F.Onset of heat transfer deterioration in supercritical methane flow channels[J].Journal of Thermophysics and Heat Transfer,2013,27(2):298-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700