用户名: 密码: 验证码:
高通量测序研究李氏禾生态浮床净化污水的微生物群落结构变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Microbial Community Composition and Variation based on High Throughput Sequencing under Leersia hexandra Swartz Ecological Floating Bed
  • 作者:李杨 ; 王芳 ; 杨海滟 ; 潘珉 ; 杜劲松
  • 英文作者:LI Yang;WANG Fang;YANG Hai-yan;PAN Min;DU Jin-song;Kunming Institute of Ecology for Dianchi Lake;Key Laboratory of State Forestry Administration for Biodiversity Conservation in Southwest China,Southwest Forestry University;University Key Laboratory of Biomass Chemical Refinery & Synthesis,Southwest Forestry University;
  • 关键词:李氏禾 ; 污水净化 ; 功能微生物群落 ; 高通量测序
  • 英文关键词:Leersia hexandra Swartz;;Wastewater purification;;Microbial functional community;;Illumina sequecing
  • 中文刊名:XNYX
  • 英文刊名:Southwest China Journal of Agricultural Sciences
  • 机构:昆明市滇池生态研究所;西南林业大学林学院国家林业局西南地区生物多样性保育重点实验室;西南林业大学云南省高校生物质化学炼制与合成重点实验室;
  • 出版日期:2018-10-16 13:27
  • 出版单位:西南农业学报
  • 年:2018
  • 期:v.31
  • 基金:国家水专项滇池“十二五”项目,第五题《滇池草海生态规模修复关键技术与工程示范课题》(2012ZX07102-005)
  • 语种:中文;
  • 页:XNYX201809023
  • 页数:9
  • CN:09
  • ISSN:51-1213/S
  • 分类号:145-153
摘要
【目的】分析李氏禾(Leersia hexandra Swartz)生态浮床联合氧气物理修复法净化污水的功能微生物群落组成及动态变化,为污水治理提供理论指导。【方法】应用高通量基因测序Illumina Miseq技术分析了李氏禾(Leersia hexandra Swartz)生态浮床联合氧气物理修复法净化污水的功能微生物群落组成及动态变化。【结果】污水中的功能微生物多样性和群落组成均随处理时间的延长发生动态变化,每个处理中的优势微生物群及相对含量不同。变形菌门(Proteobacteria)为几种污水处理中最为优势的功能微生物群,种植李氏禾与种植李氏禾+曝气处理中,拟杆菌门(Bacteroidetes)的微生物相对含量明显增加,而厚壁菌门(Firmicutes)的微生物相对含量显著降低。黄杆菌属(Flavobacterium)、噬氢菌属(Hydrogenophaga)与红杆菌属(Rhodobacter)为几种处理中共有的优势微生物菌属,种植李氏禾+曝气处理新增了与碳循环相关的微生物如丛毛单胞菌科(Comamonadaceae)、赤杆菌科(Erythrobacteraceae)、海生杆菌属(Sediminibacterium)、Emticicia属、新鞘氨醇杆菌属(Novosphingobium)与苍黄杆菌属(Luteolibacter)的微生物。种植李氏禾+缺氧处理富集具有解磷功能菌属如假单胞菌属(Pseudomonas)、黄杆菌属(Flavobacterium)和红杆菌属(Rhodobacter)。【结论】污水中的微生物多样性与污水的净化无明显正相关性,种植李氏禾+缺氧处理的微生物群落组成与静态污水对照聚集在一起,而种植李氏禾与种植李氏禾+曝气处理相似度较高。种植李氏禾+曝气处理有利于碳循环相关的微生物生长,促进污水中COD的去除。种植李氏禾+缺氧处理富集解磷功能菌,有利于污水中磷源的去除。
        【Objective】This study analyzed the microbial community composition and variation of Leersia hexandra Swartz ecological floating bed in the process of purifying wastewater.【Method】High throughput Illumina Miseq was used to analyze the microbial community composition and variation in the process of purifying wastewater. 【Result】Results showed that the microbial diversity and community composition changed with time,and the dominant microbial groups and relative abundances were different. Planting Leersia hexandra Swartz treatment increased wastewater microbial diversity with time. Proteobacteria was predominant microbes in the four treatments. The relative abundance of Bacteroidetes increased and Firmicutes decreased under planting Leersia hexandra Swartz and planting Leersia hexandra Swartz with aerobic treatments. Flavobacterium,Hydrogenophaga and Rhodobacter were the dominant genus in the four treatments. The planting Leersia hexandra Swartz with aerobic treatment was profitable for growth and propagation of carbon cycle related microbes such as sediminibacterium,Emticicia,Novosphingobium,Luteolibacter,Comamonadaceae and Erythrobacteraceae. For planting Leersia hexandra Swartz with anaerobic treatment,the phosphorus solubilizing microbes such as Pseudomonas,Flavobacterium and Rhodobacter were enriched. 【Conclusion】The microbial diversity and community composition was no obvious relation with wastewater purification. The cluster and PCOA analyses indicated the microbial compositions clustered together for planting Leersia hexandra Swartz with anaerobic treatment and static wastewater control,and which were similar for planting Leersia hexandra Swartz and planting Leersia hexandra Swartz with aerobic treatment. The planting Leersia hexandra Swartz with aerobic treatment would be helpful to remove COD. The planting Leersia hexandra Swartz with anaerobic treatment was helpful to phosphorus degradation.
引文
[1]陶笈汛,张学洪,罗昊,等.李氏禾对电镀污泥污染土壤中铬铜镍的吸收和积累[J].桂林理工大学学报,2010,30(1):144-147.
    [2]管铭,裴立,郭水良,等.假稻对铬的富集作用及其耐受能力研究[J].环境科学与管理,2010,35(3):125-130.
    [3]Briones A,Raskin L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability[J]. Current Opinion in Biotechnology,2003,14(3):270-276.
    [4]陈美群,李宝海,周建设,等.尖裸鲤病变死亡后微生物群落结构变化分析[J].西南农业学报,2017,30(5):1233-1238
    [5]Wang X,Wen X,Criddle C,Yan H,et al. Bacterial community dynamics in two full-scale wastewater treatment systems with functional stability[J]. Journal of Applied Microbiology,2010,109(4):1218-1226.
    [6]Siripong S,Rittmann B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants[J]. Water Research,2007,41(5):1110-1120.
    [7]Miura Y,Hiraiwa M N,Ito T,et al. Bacterial community structures in MBRs treating municipal wastewater:Relationship between community stability and reactor performance[J]. Water Research,2007,41(3):627-637.
    [8]Sun Y,Shen Y X,Liang P,et al. Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment. Bioresour[J]. Technol,2016,222:100-106.
    [9]Falk M W,Song K G,Matiasek M G,et al. Microbial community dynamics in replicate membrane bioreactors-natural reproducible fluctuations[J]. Water Research,2009,43(3):842-852.
    [10]Lim S,Kim S,Yeon K M,et al. Correlation between microbial community structure and biofouling in a laboratory scale membrane bioreactor with synthetic wastewater[J]. Desalination,2012,287:209-215.
    [11]Hu M,Wang X,Wen X,et al. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J]. Bioresource Technology,2012,117(10):72-79.
    [12]吴月红,许学伟.赤杆菌科微生物分类研究进展[J].微生物学通报,2016,43(5):1082-1094.
    [13]Acharya S M,Kurisu F,Kasuga I,et al. Chlorine Dose Determines Bacterial Community Structure of Subsequent Regrowth in Reclaimed Water[J]. Journal of Water&Environment Technology,2016,14(1):15-24.
    [14]Zou G,Papirio S,Lakaniemi A-M,et al. High rate autotrophic denitrification in fluidized-bed biofilm reactors[J]. Chemical Engineering Journal,2016,284:1287–1294.
    [15]Park S E,Lee S,Kim H,et al. Emticicia sediminis sp. nov. Isolated from Sediment of a Shallow Stream[J]. International Journal of Systematic&Evolutionary Microbiology,2015,65(8):2496-2499.
    [16]史江红.雌激素在污水处理系统中浓度分布及其去除效果研究进展[J].给水排水,2013,39(7):1-3.
    [17]刘兴平.氯酚类有机污染物的生物降解研究进展[J].水资源保护,2008,24(4):58-62.
    [18]袁军,赖其良,郑天凌,等.深海多环芳烃降解菌新鞘氨醇杆菌H25的降解特性及降解基因[J].微生物学报,2008,48(9):1208-1213.
    [19]孙长奇,李世国,李鹏,等.济南市护城河代表性区段底泥中细菌菌群分析[J].山东大学学报(理学版),2016(1):43-51.
    [20]Park J,Baek G S,Woo S G,et al. Luteolibacter yonseiensis sp.nov. isolated from activated sludge using algal metabolites[J]. International Journal of Systematic&Evolutionary Microbiology,2013,63(Pt5):1891-1895.
    [21]黄翔峰,李春鞠,章非娟.光合细菌的特性及其在废水处理中的应用[J].中国沼气,2005,23(1):29-35.
    [22]Cai T M,Guan L B,Chen L W,et al. Enhanced Biological Phosphorus Removal with Pseudomonas putida GM6 from Activated Sludge[J]. Pedosphere,2007,17(5):624-629.
    [23]Ortiz-Hernández M L,Quintero-Ramírez R,Nava-Ocampo A,et al. Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides[J]. Fundamental&Clinical Pharmacology,2003,17(6):717–723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700