用户名: 密码: 验证码:
滨海沙地纹荚相思和木麻黄凋落物混合分解的变化过程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mixed Decomposition Process of Litterfall of Acacia aulacocarpa and Casuarina equisetifolia Plantations in Southeast Coastal Area
  • 作者:葛露露 ; 何宗明 ; 孟庆权 ; 林宇
  • 英文作者:Ge Lulu;He Zongming;Meng Qingquan;Lin Yu;Fujian Agriculture and Forestry University;Changle Dahe State-owned Protection Forest Farm of Fujian Province;
  • 关键词:滨海沙地 ; 纹荚相思 ; 木麻黄 ; 凋落物
  • 英文关键词:Southeast coastal area;;Acacia aulacocarpa;;Casuarina equisetifolia;;Litterfall
  • 中文刊名:DBLY
  • 英文刊名:Journal of Northeast Forestry University
  • 机构:福建农林大学;福建省长乐大鹤国有防护林场;
  • 出版日期:2018-12-21 14:26
  • 出版单位:东北林业大学学报
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金项目(31570604,41371269);; 福建省林业科技项目(闽林科[2014]2号)
  • 语种:中文;
  • 页:DBLY201901007
  • 页数:7
  • CN:01
  • ISSN:23-1268/S
  • 分类号:37-42+48
摘要
以滨海沙地典型人工防护林纹荚相思和木麻黄的凋落物为对象,采用网袋法研究凋落物单独分解和不同配比组合混合分解360 d后的干质量剩余率的动态变化。结果表明:凋落物干质量剩余率,受分解时间、配比以及分解时间和配比交互的影响显著(P<0.05)。不同人工林下不同树种及不同处理的凋落物干质量剩余率有所差异,凋落物干质量剩余率由大到小顺序均为:A处理、C处理、D处理、B处理、E处理,分解速度均为先快后慢。纹荚相思人工林和木麻黄人工林不同处理凋落物分解360 d后,凋落物干质量剩余率分别为43.38%~54.58%和40.86%~52.42%,Olson指数衰减模型的分解系数分别为0.647~0.895和0.755~0.888,半衰期(凋落物分解50%所需的时间)分别为0.774~1.071 a和0.781~0.918 a,周转期(凋落物分解95%所需的时间)分别为3.347~4.630 a和3.374~3.968 a。从分解速率来看,E处理(m(纹荚相思)∶m(木麻黄)=2∶1)的分解为最佳组合,建议在土壤养分贫瘠的滨海沙地营林过程中,营造该比例混交林来加快林下凋落物分解,促进土壤改善养分状况。
        We studied the litterfall of Acacia aulacocarpa and Casuarina equisetifolia plantations in the coastal sandy land of Fuzhou City,and their dynamic change of dry weight remaining rate of separate decomposition and mixed decomposition of360 d with different ratios by mesh nylon bag method. The litter dry weight remaining rate was influenced significantly by decomposition time,mixture ratio,decomposition time and ratio( P<0.05). The dry weight remaining rate of litter under different plantations and different treatments was different,in descending order of A,C,D,B and E. The speed of decomposition was fast,and then slow. The dry weight remaining rate of A. aulacocarpa and C. equisetifolia litter by different treatments after 360 d were 43.38%-54.58% and 40.86%-52.42%,respectively. The decomposition coefficients of the Olson exponential decay model were 0.647-0.895 and 0.755-0.888,respectively. The half-life( the time needed for litter decomposition 50%) were 0.774-1.071 and 0.781-0.918 a,respectively. The turnover time( the time needed for litter decomposition 95%) were 3.347-4.630 and 3.374-3.968 a,respectively. From the decomposition rate,E processing( m( A.aulacocarpa) ∶ m( C. equisetifolia) = 2 ∶ 1) was decomposed into the best combination. It was suggested that the mixed forest should be built in the coastal sandy land with poor soil nutrients to accelerate decomposition of litter and improve soil nutrient status.
引文
[1]张琴.红松阔叶林凋落物分解特性研究[D].北京:北京林业大学,2014.
    [2]杨玉盛,郭剑芬,陈银秀,等.福建柏和杉木人工林凋落物分解及养分动态的比较[J].林业科学,2004,40(3):19-25.
    [3]章志琴.杉木与阔叶树凋落物分解特征的比较及其混合分解研究[D].福州:福建农林大学,2005.
    [4]林晗.千年桐林分凋落物及其叶分解动态研究[D].福州:福建农林大学,2009.
    [5]陈瑾,李扬,黄建辉.内蒙古典型草原4种优势植物凋落物的混合分解研究[J].植物生态学报,2011,35(1):9-16.
    [6]王欣.燕山山地华北落叶松人工林叶凋落物分解特性研究[D].保定:河北农业大学,2012.
    [7]李云,周建斌,董燕捷,等.黄土高原不同植物凋落物的分解特性[J].应用生态学报,2012,23(12):3309-3316.
    [8]何丹.马尾松、樟树凋落物混合分解及养分释放[D].长沙:中南林业科技大学,2015.
    [9]张月全.酸雨区不同林龄杉木人工林凋落物混合分解特征及土壤酶活性动态[D].福州:福建农林大学,2016.
    [10]黎锦涛,孙学凯,胡亚林,等.干湿交替对科尔沁沙地人工林叶凋落物分解和养分释放的影响[J].应用生态学报,2017,28(6):1743-1752.
    [11]林德喜,樊后保.马尾松林下补植阔叶树后森林凋落物量、养分含量及周转时间的变化[J].林业科学,2005,41(6):7-15.
    [12]郭忠玲,郑金萍,马元丹,等.长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J].生态学报,2006,26(4):1037-1046.
    [13]林成芳,高人,陈光水,等.凋落物分解模型研究进展[J].福建林业科技,2007,34(3):227-234.
    [14]林宇.沿海沙地厚荚相思和木麻黄凋落叶分解及养分释放[J].西北林学院学报,2014,29(6):12-19.
    [15]林宇,张勇,黄秀勇,等.滨海沙地尾巨桉人工林凋落物及其分解[J].东北林业大学学报,2014,42(3):11-14.
    [16]林开敏,章志琴,叶发茂,等.杉木人工林下杉木、楠木和木荷叶凋落物分解特征及营养元素含量变化的动态分析[J].植物资源与环境学报,2010,19(2):34-39.
    [17]唐仕姗,杨万勤,殷睿,等.中国森林生态系统凋落叶分解速率的分布特征及其控制因子[J].植物生态学报,2014,38(6):529-539.
    [18]何宗明,陈光水,刘剑斌,等.杉木林凋落物产量、分解率与储量的关系[J].应用与环境生物学报.2003,9(4):352-356.
    [19]王瑾,黄建辉.暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较[J].植物生态学报,2001,25(3):375-380.
    [20] EDMONDS R L,THOMAS T B. Decomposition and nutrient release from green needles of western hemlock and Pacific silverfir in an old-growth temperate rain forests,Olympic National Park Washington[J]. Canadian Journal of Forest Research,1995,25(7):1049-1057.
    [21]邱尔发,陈卓梅,郑郁善,等.麻竹山地笋用林凋落物发生、分解及养分归还动态[J].应用生态学报,2005,16(5):811-814.
    [22]许新健,陈金耀,俞新妥.武夷山六种杉木伴生树种落叶养分归还的研究[J].福建林学院学报,1995,15(3):213-217.
    [23] GARCIA-PAUSAS J,CASALS P,ROMANYJ. Litter decomposition and faunal activity in Mediterranean forest soils:effects of N content and the moss layer[J]. Soil Biology&Biochemistry,2004,36(6):989-997.
    [24] AYRES E,STELTZER H,BERG S,et al. Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them[J].Journal of Ecology,2009,97(5):901-912.
    [25] GHOLZ H L,WEDIN D A,SMITHERMAN S M,et al. Longterm dynamics of pine and hardwood litter in contrasting environments:toward a global model of decomposition[J]. Global Change Biology,2000,6(7):751-765.
    [26] LUCA V,AMYT A. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia,Argentina[J]. Journal of Ecology,2008,96(4):727-736.
    [27] STRICKLAND M S,LAUBER C,FIERER N,et al. Testing the functional significance of microbial community composition[J].Ecology,2009,90(2):441-451.
    [28] STRICKLAND M S,OSBURN E,LAUBER C,et al. Litter quality is in the eye of the beholder:initial decomposition rates as a function of inoculum characteristics[J]. Functional Ecology,2009,23(3):627-636.
    [29] AYRES E,STELTZER H,SIMMONS B L,et al. Home-field advantage accelerates leaf litter decomposition in forests[J]. Soil Biology&Biochemistry,2009,41(3):606-610.
    [30]黄建辉,陈灵芝,韩兴国.几种常微量元素在辽东栎枝条分解过程中的变化特征[J].生态学报,2000,20(2):229-234.
    [31]谭芳林.木麻黄防护林生态系统凋落物及养分释放研究[J].林业科学,2003,39(S1):21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700