用户名: 密码: 验证码:
主镜半主动支撑的力矩校正方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on moment correction method of primary mirror semi-active support
  • 作者:刘祥意 ; 王富国 ; 张景旭 ; 范磊 ; 王文攀
  • 英文作者:Liu Xiangyi;Wang Fuguo;Zhang Jingxu;Fan Lei;Wang Wenpan;Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences;
  • 关键词:SiC ; 主镜支撑 ; 力矩校正 ; 半主动
  • 英文关键词:SiC;;primary mirror support;;moment correction;;semi-active
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:中国科学院长春光学精密机械与物理研究所;
  • 出版日期:2019-01-25 16:31
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.295
  • 基金:国家自然科学基金青年科学基金(11403023)
  • 语种:中文;
  • 页:HWYJ201905036
  • 页数:8
  • CN:05
  • ISSN:12-1261/TN
  • 分类号:260-267
摘要
主镜支撑技术一直是大口径望远镜技术的关键技术,以2 m SiC轻量化主镜为研究对象,探究了通过力矩校正的半主动支撑方法,用于校正一些由于加工误差、装配误差等因素引起的一些不可预知的因素所导致的低阶波前像差。首先建立有限元仿真模型,进行仿真分析,分别在6处Tripod柔铰处施加两个方向正交的,大小为1 Nmm的单位校正力Mx和My,共分析12种工况下的主镜变形情况;然后利用微小变形的线性叠加原理,分析计算该力矩校正方法对低阶波前像差的校正能力,由分析计算可知,该力矩校正方法对于加工、装配及装调过程中最常出现的倾斜和像散具有很好的校正能力,可以将初始镜面RMS值归一化为1/10λ(λ=632.8 nm)的像差,分别校正到0.687 nm和2.97 nm,校正能力分别为98.9%和95.3%,所需的最大校正力矩分别为6.3 Nmm和19.9 Nmm;然后根据主镜的whiffletree支撑结构,设计了力矩校正结构方案;最后通过试验验证柔性薄片力矩校正结构形式的可行性,进而验证半主动支撑力矩校正方案的可行性,为半主动支撑的工程应用积累了一定的宝贵经验,具有一定的指导意义。
        In the development of large ground-based telescope technology, the primary mirror support technology is always a key technology. In this paper, a semi-active support method was researched based on a 2 m SiC lightweight primary mirror, which was used to correct some unpredictable low-order wavefront aberration caused by machining error, assembly error and other factors. Firstly, the finite element simulation model was established, and the finite element simulation was carried out. An unit correction moment(1 Nmm) of Mx or My, which were two orthogonal moments, was separately applied to the 6 Tripod soft hinge, so the primary mirror deformations under a total of 12 cases of the situation were respectively analyzed. And then with the linear superposition principle of small deformation, the correction ability of the moment correction method for low order wavefront aberration was analyzed and calculated. It could be seen from the analysis that the moment correction method could correct the tilt and astigmatism very well. The initial mirror RMS value of the tilt and initial astigmatism which were normalized to 1/10λ(λ =632.8 nm), could be respectively corrected to 0.687 nm and 2.97 nm, the correction abilities were respectively 98.9% and 95.3%, and the required maximum correction moments were respectively 6.3 Nmm and 19.9 Nmm. Then, according to the whiffletree support structure of the primary mirror, a structure of the moment correction was designed with the leaf spring at the Tripod soft hinge. Finally, the feasibility of the leaf spring correction structure was verified through experiments, and the feasibility of the semi-active support scheme of moment correction was verified further. And a certain degree of engineering experience for the implementation of the moment correction method has been accumulated with high guiding significance.
引文
[1] Zhang Jingxu. Overview of structure technologies of large aperture ground-based telescopes[J]. Chinese Optics, 2012, 4(5):327-328.(in Chinese)张景旭.地基大口径望远镜系统结构技术综述[J].中国光学, 2012, 4(5):327-328.
    [2] Bely P. The Design and Construction of Large Optical Telescopes[M]. New York:Springer, 2003.
    [3] Cheng Jingquan. Principles of Astronomical telescope Design[M]. Beijing:China Science&Technology Press,2003.(in Chinese)程景全.天文望远镜原理和设计[M].北京:中国科学技术出版社, 2003.
    [4] Wang Fuguo, Wu Xiaoxia, Shao Liang, et al. Review of foreign ground-based telescope primary mirror support[J]. Laser&Infrared, 2012, 42(3):237-243.(in Chinese)王富国,吴小霞,邵亮,等.国外大型地基望远镜主镜支撑综述[J].激光与红外, 2012, 42(3):237-243.
    [5] Shao Liang, Wu Xiaoxia, Chen Baogang, et al. Passive support system of light-weighted SiC primary mirror[J].Opt Precision Eng, 2015, 23(5):1380-1386.(in Chinese)邵亮,吴小霞,陈宝刚,等. SiC轻量化主镜的被动支撑系统[J].光学精密工程, 2015, 23(5):1380-1386.
    [6] Neufeld C, Sarnik A, Sebring T A, et al. Development of an active optical system for the SOAR telescope[C]//SPIE, 2004, 5489:1052-1060.
    [7] Krabbendam V L, Ruthven G P, Bennett V P, et al. Active optical system design for the 4.2 m SOAR telescope[C]//Astronomical Telescopes and Instrumentation.International Society for Optics and Photonics, 2000:122-135.
    [8] Kimbrell J E, Greenwald D. AEOS 3.67 m telescope primary mirror active control system[C]//SPIE, 1998,3352(4):506-507.
    [9] Bennett R J. Active mirror support using pneumatic actuators[C]//SPIE, 2004, 5497:91-102.
    [10] Stobie B, Jeffers P, Stewart M, et al. VISTA M1support system[C]//SPIE, 2010, 7733:77332P.
    [11] Krcher H J. Mechanical principles of large mirror supports[C]//SPIE, 2010, 7733:82.
    [12] Ponslet E, Dan B, Cho M, et al. Development of the primary mirror segment support assemblies for the Thirty Meter Telescope[C]//SPIE, 2006, 6273:627319.
    [13] Lemared S, Hugot E, Challita Z, et al. Smart warping harnesses for active mirrors and stress polishing[C]//SPIE, 2016, 9912:991267.
    [14] Wu Xiaoxia, Wang Minghao, Ming Ming, et al.Calibration of thermal distortion for large aperture SiC lightweight mirror[J]. Opt Precision Eng, 2012, 20(6):1244.(in Chinese)吴小霞,王鸣浩,明名,等.大口径SiC轻量化主镜热变形的定标[J].光学精密工程, 2012, 20(6):1244.
    [15] Liu Hongwen. Advanced Mechanics of Materials[M].Beijing:Higher Eduction Press, 1985.(in Chinese)刘鸿文.高等材料力学[M].北京:高等教育出版社, 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700