用户名: 密码: 验证码:
方坯连铸结晶器铜管温度场分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature analysis for mold copper tube of billet continuous casting
  • 作者:王泽鹏 ; 肖鹏程 ; 朱立光 ; 刘增勋 ; 张仕骏
  • 英文作者:WANG Ze-peng;XIAO Peng-cheng;ZHU Li-guang;LIU Zeng-xun;ZHANG Shi-jun;College of Metallurgy and Energy,North China University of Science and Technology;Hebei Engineering Research Center of High Quality Steel Continuous Casting;
  • 关键词:三维传热 ; 结晶器 ; 有限元分析 ; 水垢 ; 方坯
  • 英文关键词:3-D heat transfer;;continuous casting mold;;finite element analysis;;scale;;billet
  • 中文刊名:GANT
  • 英文刊名:Iron & Steel
  • 机构:华北理工大学冶金与能源学院;河北省高品质钢连铸工程技术研究中心;
  • 出版日期:2018-03-15
  • 出版单位:钢铁
  • 年:2018
  • 期:v.53
  • 基金:河北省教育厅科研资助项目(ZD2014012);; 河北省自然科学基金资助项目(E2015209207)
  • 语种:中文;
  • 页:GANT201803007
  • 页数:7
  • CN:03
  • ISSN:11-2118/TF
  • 分类号:44-49+55
摘要
基于结晶器传热特点建立方坯连铸结晶器三维瞬态传热模型,利用节点温度传递模拟铸坯运行,采用ANSYS软件进行模型分析,经过充分迭代得到结晶器三维稳态温度场,并与传统二维铸坯传热模型进行对比。通过动态边界条件加载技术实现铜壁冷面水垢厚度的连续变化,分析了水垢对结晶器铜壁温度分布的影响。结果表明,在结晶器顶部区域,三维传热模型分析结果与铜壁温度分布规律基本吻合,弯月面下50 mm附近铜壁温度达到高峰,弯月面处水垢厚度由0.1增加到0.5 mm时,铜壁最高温度由187升高至318℃,铜壁高温区域扩大,铜壁变形程度增加。
        Based on the characteristics of mold heat transfer,a three-dimensional transient heat transfer model of billet continuous casting mold is established. Casting process of the billet is simulated by a node temperature transfer method. The ANSYS finite element software is used to analyze the model. The three-dimensional steady-state temperature field of the billet mold is obtained by sufficient iteration and compared with the traditional two-dimensional model.The influence of scale on mold temperature distribution has been analyzed through the continuous change of the scale loading technique of dynamic boundary conditions. The result is detailed as follows. The analyzed result obtained by three-dimensional heat transfer model in the top zone of the mold is basically coincident with copper wall temperature distribution rule. The copper wall temperature reached its peak at 50 mm near the meniscus. The highest temperature of copper wall would be increased from 187 to 318 ℃ when meniscus scale thickness added from 0.1 to 0.5 mm. In this case,high temperature region of copper wall would be expanded so that copper wall deformation degree could be increased.
引文
[1]孙立根,崔立新,张家泉.U71Mn大方坯凝固坯壳与结晶器铜管温度场的数值模拟[J].系统仿真学报,2009,21(7):1862.(SUN Li-gen,CUI Li-xin,ZHANG Jia-quan.Numerical simulation for temperature distribution of initial solidifying shell with mold tube during bloom casting of U71Mn steel[J].Journal of system simulation,2009,21(7):1862.)
    [2]钟晓丹,宋满堂,刘军,等.350 mm×470 mm矩形坯连铸生产轴承钢的凝固末端[J].中国冶金,2015,25(2):10.(ZHONG Xiao-dan,SONG Man-tang,LIU Jun,et al.Solidification end of manufacturing bearing steel on 350 mm×470 mm bloom casting[J].China Metallurgy,2015,25(2):10.)
    [3]朱立光,李琨,李曜光,等.板坯连铸结晶器铜板传热行为[J].铸造技术,2016(4):706.(ZHU Li-guang,LI Kun,LI Yaoguang,et al.Heat transfer behavior of crystallizer copper plate for slab continuous casting[J].Foundry Technology,2016(4):706.)
    [4]郭佳,蔡开科.板坯连铸结晶器铜板温度场研究[J].炼钢,1994(3):27.(GUO Jia,CAI Kai-ke.Numerical study on temperature field of mold of slab concaster[J].Steelmaking,1944(3):27.)
    [5]胡硕,王朋飞,朱立光,等.漏斗形薄板坯结晶器内铸坯传热分析[J].钢铁,2017,52(2):33.(HU Shuo,WANG Peng-fei,ZHU Li-guang,et al.Analysis of heat transfer in thin slab funnel shape mold[J].Iron and Steel,2017,52(2):33.)
    [6]江中块,蔡兆镇,牛振宇,等.1 650板坯压下过程热/力学行为及压下工艺优化[J].中国冶金,2017,27(7):22.(JIANG Zhong-kuai,CAI Zhao-zhen,NIU Zhen-yu,et al.Thermo-mechanical behavior of 1 650 slab during soft reduction and optimization of soft reduction process[J].China Metallurgy,2017,27(7):22.)
    [7]孙开明,付继成,李京社,等.圆坯连铸凝固传热数学模型及应用[J].钢管,2009,38(3):23.(SUN Kai-ming,FU Ji-cheng,LI Jing-she,et al.Math model for solidification heat-transfer in continuous casting of round bloom and application[J].Steel Pipe,2009,38(3):23.)
    [8]张炯明,张立,杨会涛,等.板坯结晶器钢水凝固的数值模拟[J].北京科技大学报,2004,26(2):130.(ZHANG Jiong-ming,ZHANG Li,YANG Hui-tao,et al.Numerical simulation of molten steel solidification in slab mold[J].Journal of University of Science and Technology Beijing,2004,26(2):130.)
    [9]Kelly J E,Michael K P,Thomas B G.Initial development of thermal and stress fields in continuously casting billets[J].Metallurgical and Material Transactions:A,1998,19(10):2589.
    [10]邹达基,邹宗树.关于连铸凝固传热数值模拟中钢液有效导热系数的探讨[J].连铸,2009(6):5.(ZOU Da-ji,ZOU Zongshu.Discussion on effective thermal conductivity of molten steel in numerical simulation of solidification in continuous casting[J].Continuous Casting,2009(6):5.)
    [11]蔡开科.浇注与凝固[M].北京:冶金工业出版社,1992.(CAI Kai-ke.Casting and Solidification[M].Beijing:Metallurgical Industry Press,1992.)
    [12]胡硕,王朋飞,朱立光,等.漏斗形薄板坯结晶器内铸坯传热分析[J].钢铁,2017,52(2):33.(HU Shuo,WANG Peng-fei,ZHU Li-guang,et al.Analysis of heat transfer in thin slab funnel shape mold[J].Iron and Steel,2017,52(2):33.)
    [13]蔡开科.连铸结晶器[M].北京:冶金工业出版社,2008.(CAI Kai-ke.Continuous Casting Mold[M].Beijing:Metallurgical Industry Press,2008.)
    [14]陶红标,唐红伟,席常锁,等.淮钢方坯结晶器铜管温度的测定[J].钢铁,2004,39(4):24.(TAO Hong-biao,TANG Hongwei,XI Chang-suo,et al.Temperature measurement for mold tube of billet caster at Huaiyin Steel[J].Iron and Steel,2004,39(4):24.)
    [15]牛群.CSP流程结晶器内钢水到冷却水的水平传热热阻模型[C]//“第十届中国钢铁年会”暨“第六届宝钢学术年会”论文集.北京:中国金属学会,宝钢集团有限公司,2015:5.(NIU Qun.The modle of horizontal heat transfer resistance of mold from molten steel to cooling water in CSP process[C]//The 10th CSM Congress and the 6th Biennial Academic Conference.Beijing:The Chinese Society for Metals,Baosteel Group Coporation,2015:5.)
    [16]陈家祥.连续铸钢手册[M].北京:冶金工业出版社,1991.(CHEN Jia-xiang.Continuous Cast Steel Handbook[M].Beijing:Metallurgical Industry Press,1991.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700