用户名: 密码: 验证码:
助剂Zn对PtSn/Al_2O_3催化剂丙烷脱氢性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Zn on catalytic performances of PtSn/Al_2O_3 in propane dehydrogenation
  • 作者:马占华 ; 李帅 ; 姜爱晶 ; 李军 ; 孙兰义 ; 安长华
  • 英文作者:MA Zhanhua;LI Shuai;JIANG Aijing;LI Jun;SUN Lanyi;AN Changhua;State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum;Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology;
  • 关键词:丙烷脱氢 ; 锌助剂 ; 催化剂 ; 选择性 ; 稳定性
  • 英文关键词:propane dehydrogenation;;Zn promoter;;catalyst;;selectivity;;stability
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国石油大学化学工程学院重质油国家重点实验室;天津理工大学化学化工学院天津市有机太阳能电池与光化学转换重点实验室;
  • 出版日期:2019-04-30 14:14
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.335
  • 基金:国家自然科学基金(21506255)
  • 语种:中文;
  • 页:HGJZ201908021
  • 页数:9
  • CN:08
  • ISSN:11-1954/TQ
  • 分类号:179-187
摘要
以羰基铂锡化合物为前体,采用浸渍法将其负载于Zn改性Al_2O_3载体上制备了PtSn/x Zn-Al_2O_3催化剂,考察了Zn的添加对催化剂丙烷脱氢性能的影响。采用N2吸附-脱附、X射线衍射(XRD)、吡啶红外吸附(Py-IR)、氨气程序升温脱附(NH3-TPD)、透射电子显微镜(TEM)等手段对催化剂的孔结构、表面酸性以及积炭行为进行了分析。结果表明,PtSn/x Zn-Al_2O_3催化剂孔道以介孔为主,孔径集中分布于8~10nm;Zn助剂的添加,在催化剂表面会形成ZnO物种,可使PtSn/Al_2O_3催化剂上的金属颗粒粒径减小、分散更加均匀;Zn的加入能有效降低催化剂表面酸量,主要表现为L中强/强酸中心的降低,随着Zn含量的增加,催化剂表面酸量先减少后增加。少量Zn的存在可使PtSn/Al_2O_3丙烯选择性和稳定性显著提高,但过量Zn的加入会降低催化剂的脱氢活性,适宜Zn的质量分数为0.75%~1.0%。反应后催化剂表面积炭主要表现为烯烃性质和芳香烃性质,Zn的添加可有效抑制积炭的形成,提高催化剂稳定性。
        The PtSn/x Zn-Al_2O_3 catalysts were prepared from platinum-tin carbonyl complexes by impregnation of the precursors on Zn-modified Al_2O_3 support. The effects of Zn on the catalytic performance of PtSn/Al_2O_3 catalysts in propane dehydrogenation were investigated. The physical structures, the surface acidities and the carbon deposition behaviors of PtSn/x Zn-Al_2O_3 were studied by several techniques, including N2 adsorption-desorption, X-ray diffraction(XRD), infrared spectra of pyridine adsorption(Py-IR), ammonia temperature-programmed desorption(NH3-TPD) and transmission electron microscopy(TEM). The results showed that the pore sizes in PtSn/x Zn-Al_2O_3 were mainly distributed between 8 nm and 10 nm. When Zn was added to PtSn/Al_2O_3 catalyst, ZnO species were formed,which could promote the metal particles to be smaller and more evenly dispersed on the surface of the catalysts. The acid quantity was reduced after Zn was added, especially for the acid sites with medium and strong Lewis acidity. With the increase of Zn loading, the acid quantity decreased firstly and then increased. The propylene selectivity and the stability of PtSn/Al_2O_3 catalysts were obviously improved by adding Zn promotor. However, the dehydrogenation activity decreased rapidly when the excess Zn was added. The optimized loading of Zn should be in the range of 0.75%—1.0%(mass fraction). The carbon deposited on the surface of the catalyst was mainly composed of olefin and aromatic hydrocarbons. The presence of Zn promoter could effectively inhibit the formation of deposited coke and improve the stability of the catalysts.
引文
[1] SUN C Y, LUO J Y, CAO M J, et al. A comparative study on different regeneration processes of Pt-Sn/γ-Al2O3catalysts for propane dehydrogenation[J].JournalofEnergyChemistry,2018,27(1):311-318.
    [2]韩伟,潘相米,谭亚南,等. Na2CO3处理制备复合孔ZSM-5分子筛及其丙烷脱氢制丙烯的催化性能[J].化工进展, 2016, 35(s2):174-178.HAN Wei, PAN Xiangmi, TAN Yanan, et al. Preparation of hierarchical ZSM-5 zeolites treated by Na2CO3and its catalytic performance for propane dehydrogenation to propylene[J]. Chemical Industry and Engineering Progress, 2016, 35(s2):174-178.
    [3] SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E,et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114:10613-10653.
    [4]刘淑鹤,方向晨,张喜文,等.丙烷脱氢催化反应机理及动力学研究进展[J].化工进展, 2009, 28(2):259-266, 282.LIU Shuhe, FANG Xiangcheng, ZHANG Xiwen, et al. Advances in catalytic mechanisms and kinetics of propane dehydrogenation[J].Chemical Industry and Engineering Progress, 2009, 28(2):259-266, 282.
    [5] REN G Q, PEI G X, REN Y J, et al. Effect of group IB metals on the dehydrogenationofpropanetopropyleneoveranti-sinteringPt/MgAl2O4[J].JournalofCatalysis,2018,366:115-126.
    [6]冯静,张明森,刘红梅,等.钙助剂对PtZn/SBA-15丙烷脱氢催化剂性能的影响[J].石油化工, 2017, 46(7):845-849.FENG Jing, ZHANG Mingsen, LIU Hongmei, et al. The effects of calcium on the performance of PtZn/SBA-15 catalysts for propane dehydrogenation[J]. Petrochemical Technology, 2017, 46(7):845-849.
    [7] ZHAO S Y, XU B L, YU L, et al. Catalytic dehydrogenation of propane to propylene over highly active PtSnNa/γ-Al2O3catalyst[J]. Chinese Chemical Letters, 2018, 29(3):475-478.
    [8] BAI L Y, ZHOU Y M, ZHANG Y W, et al. Influence of calcium addition on catalytic properties of PtSn/ZSM-5 catalyst for propane dehydrogenation[J]. Catalysis Letters, 2009, 129(3/4):449-456.
    [9] DONG A H, WANG K, ZHU S Z, et al. Facile preparation of PtSn-La/Al2O3catalyst with large pore size and its improved catalytic performance for isobutane dehydrogenation[J]. Fuel Processing Technology, 2017, 158:218-225.
    [10] TASBIHI M, FEYZI F, AMLASHI M A, et al. Effect of the addition of potassium and lithium in Pt-Sn/Al2O3catalysts for the dehydrogenation of isobutane[J]. Fuel Processing Technology, 2007, 88(9):883-889.
    [11] WAN L H, ZHOU Y M, ZHANG Y W, et al. Influence of lanthanum addition on catalytic properties of PtSnK/Al2O3catalyst for isobutane dehydrogenation[J]. Industrial&Engineering Chemistry Research,2011, 50(8):4280-4285.
    [12] BOCANEGRA S A, GUERRERO-RUIZ A, MIGUEL S R, et al.Performance of PtSn catalysts supported on MAl2O4(M:Mg or Zn)in n-butane dehydrogenation:characterization of the metallic phase[J].Applied Catalysis A:General, 2004, 277(1/2):11-22.
    [13] AGUILAR-RíOS G, VALENZUELA M, SALAS P, et al. Hydrogen interactions and catalytic properties of platinum-tin supported on zinc aluminate[J]. Applied Catalysis A:General, 1995, 127(1/2):65-75.
    [14] SILVESTRE-ALBERO J, SERRANO-RUIZ J C, SEPúLVEDAESCRIBANO A, et al. Modification of the catalytic behaviour of platinum by zinc in crotonaldehyde hydrogenation and iso-butane dehydrogenation[J]. Applied Catalysis A:General, 2005, 292:244-251.
    [15] COLA P L, GL?SER R, WEITKAMP J. Non-oxidative propane dehydrogenation over Pt-Zn-containing zeolites[J]. Applied Catalysis A:General, 2006, 306:85-97.
    [16] ZHANG Y W, ZHOU Y M, HUANG L, et al. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation[J]. Chemical Engineering Journal, 2015,270:352-361.
    [17]余长林,徐恒泳,葛庆杰,等. Zn对Pt-Sn/Al2O3催化剂中Sn的活性状态及丙烷脱氢反应的影响[J].高等学校化学学报, 2006, 127(8):1492-1495.YUChanglin,XUHengyong,GEQingjie,etal.InfluenceofZnonactive state of Sn in PtSn/γ-Al2O3catalysts and propane dehydrogenation[J].ChemicalJournalofChineseUniversities,2006,127(8):1492-1495.
    [18] YU C L, XU H Y, GE Q J, et al. Properties of the metallic phase of zinc-doped platinum catalysts for propane dehydrogenation[J]. Journal of Molecular Catalysis A:Chemical, 2007, 266(1/2):80-87.
    [19] KAPPENSTEIN C, GUéRIN M, LáZáR K, et al. Characterisation and activity in n-hexane rearrangement reactions of metallic phases on Pt-Sn/Al2O3catalysts of different preparations[J]. Journal of the Chemical Society, Faraday Transactions, 1998, 94(16):2463-2473.
    [20] VU B K, SONG M B, AHN I Y, et al. Pt-Sn alloy phases and coke mobility over Pt-Sn/Al2O3and Pt-Sn/ZnAl2O4catalysts for propane dehydrogenation[J]. Applied Catalysis A:General, 2011, 400(1):25-33.
    [21] GARCíA B L, CAPTAIN B, ADAMS R D, et al. Bimetallic cluster provides a higher activity electrocatalyst for methanol oxidation[J].Journal of Cluster Science, 2007, 18(1):121-130.
    [22] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4):603-619.
    [23]方萍,何迈,谢云龙,等. Al2O3高温相变的XRD和Raman光谱比较研究[J].光谱学与光谱分析, 2006, 26(11):2039-3042.FANG Ping, HE Mai, XIE Yunlong, et al. XRD and Raman spectroscopic comparative study on phase transformation ofγ-Al2O3at high temperature[J]. Spectroscopy and Spectral Analysis, 2006, 26(11):2039-3042.
    [24] ARNDT S, UYSAL B, BERTHOLD A, et al. Supported ZnO catalysts for the conversion of alkanes:about the metamorphosis of a heterogeneous catalyst[J]. Journal of Natural Gas Chemistry, 2012, 21(5):581-594.
    [25] ELHALIL A, ELMOUBARKI R, FARNANE M, et al. Photocatalytic degradation of caffeine as a model pharmaceutical pollutant on Mg doped ZnO-Al2O3heterostructure[J]. Environmental Nanotechnology,Monitoring&Management, 2018, 10:63-72.
    [26] WANG H C, WEI Y L, YANG Y W, et al. XAS study of Zn-doped Al2O3after thermal treatment[J]. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144/145/146/147:817-819.
    [27] WU J, PENG Z M, BELL A T. Effects of composition and metal particle size on ethane dehydrogenation over Ptx Sn100-x/Mg(Al)O(70≤x≤100)[J]. Journal of Catalysis, 2014, 311:161-168.
    [28] VIRNOVSKAIA A, RYTTER E, OLSBYE U. Kinetic and isotopic study of ethane dehydrogenation over a semicommercial Pt,Sn/Mg(Al)O catalyst[J]. Industrial&Engineering Chemistry Research, 2008, 47(19):7167-7177.
    [29] JEON S, PARK Y M, PARK J, et al. Synergistic effects of Nb2O5promoter on Ru/Al2O3for an aqueous-phase hydrodeoxygenation of glycerol to hydrocarbons[J]. Applied Catalysis A:General, 2018, 551:49-62.
    [30] SHAN Y L, WANG T, SUI Z J, et al. Hierarchical MgAl2O4supported Pt-Sn as a highly thermostable catalyst for propane dehydrogenation[J]. Catalysis Communications, 2016, 84:85-88.
    [31] YU C L, GE Q J, XU H Y, et al. Effects of Ce addition on the Pt-Sn/γ-Al2O3catalyst for propane dehydrogenation to propylene[J]. Applied Catalysis A:General, 2006, 315:58-67.
    [32] NAGARAJA B M, JUNG H, YANG D R, et al. Effect of potassium addition on bimetallic PtSn supportedθ-Al2O3catalyst for n-butane dehydrogenation to olefins[J]. Catalysis Today, 2014, 232:40-52.
    [33] MATSUSHITA K, HAUSER A, MARAFI A, et al. Initial coke deposition on hydrotreating catalysts. Part 1. Changes in coke properties as a function of time on stream[J]. Fuel, 2004, 83(7/8):1031-1038.
    [34] CERQUEIRA H S, SIEVERS C, JOLY G, et al. Multitechnique characterization of coke produced during commercial resid FCC operation[J]. Industrial&Engineering Chemistry Research, 2005, 44(7):2069-2077.
    [35]李庆. Pt催化剂上丙烷脱氢反应与结焦动力学[D].上海:华东理工大学, 2012.LI Qing. The kinetics of propane dehydrogenation and coke formation over Pt catalysts[D]. Shanghai:East China University of Science and Technology, 2012.
    [36] YANG J, STANSBERRY P G, ZONDLO J W, et al. Characteristics and carbonization behaviors of coal extracts[J]. Fuel Processing Technology, 2002, 79(3):207-215.
    [37] SILVESTRE-ALBERO J, SANCHEZ-CASTILO M A, HE R, et al. Microcalorimetric, reaction kinetics and DFT studies of Pt-Zn/X-zeolite for isobutane dehydrogenation[J]. Catalysis Letters, 2001,74(1/2):17-25.
    [38] CYBULSKIS V J, BUKOWSKI B C, TSENG H T, et al. Zinc promotion of platinum for catalytic light alkane dehydrogenation:insight into geometric and electronic effects[J]. ACS Catalysis, 2017, 7(6):4173-4181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700