用户名: 密码: 验证码:
未知声速下长基线系统定位修正算法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Positioning Correction Algorithm for Long Baseline System with Uncertain Sound Speed
  • 作者:黄健 ; 严胜刚
  • 英文作者:HUANG Jian;YAN Shenggang;School of Marine Science and Technology, Northwestern Polytechnical University;
  • 关键词:长基线定位系统 ; 粒子群优化算法 ; 有效声速 ; 声速修正
  • 英文关键词:long baseline positioning system;;particle swarm optimization;;effective sound speed;;sound speed correction
  • 中文刊名:SHJT
  • 英文刊名:Journal of Shanghai Jiaotong University
  • 机构:西北工业大学航海学院;
  • 出版日期:2019-03-28
  • 出版单位:上海交通大学学报
  • 年:2019
  • 期:v.53;No.397
  • 基金:国家自然科学基金面上项目(61371151)
  • 语种:中文;
  • 页:SHJT201903017
  • 页数:7
  • CN:03
  • ISSN:31-1466/U
  • 分类号:118-124
摘要
在长基线水下声学定位系统中,由声速不确定引起的误差是影响其定位精度的主要因素.通过设置声信号在目标和不同水听器之间以不同的声速传播,给出了一种声速未知情况下的长基线系统定位修正算法.首先,利用长基线系统中的冗余信息建立了多参数优化函数来估计有效声速.其次,选择粒子群算法来解算优化函数,得到目标与不同水听器之间的有效声速.最后,由得到的有效声速来对目标进行定位.仿真结果表明,与传统算法相比,基于粒子群优化的算法可以有效提高长基线定位系统的定位精度.
        In long baseline positioning system, the error induced by uncertain sound speed is the most damaging factor affecting the positioning accuracy. A long baseline system positioning correction algorithm with uncertain sound speed is proposed by setting the acoustic signal to propagate between the target and different hydrophones at different sound speed. First, a multi-parameter optimization function is built to estimate the effective sound speed using the redundant information in the long baseline system. Then the particle swarm optimization algorithm is utilized to solve the optimization function, and the effective sound speeds between the target and each hydrophones are obtained. Finally, the target is positioned by the resulting effective sound speed. The simulation results show that the proposed algorithm can effectively improve the positioning accuracy of long baseline positioning system compared with the existing algorithms.
引文
[1] MORADI M, REZAZADEH J, ISMAIL S A. A reverse localization scheme for underwater acoustic sensor networks[J]. Sensors, 2012, 12(4): 4352-4380.
    [2] KIM K, JANG I S, SHIN C J, et al. Design of underwater precise navigation system for shallow water depth application[C]//OCEANS-IEEE. Taipei, Taiwan: IEEE, 2014: 1-4.
    [3] KIM K, JANG I S. Underwater acoustic positioning system design for shallow water depth application[J]. International Journal of Ocean System Engineering, 2013, 3(1): 44-48.
    [4] ARRICHIELLO F, HEIDARSSON H K, SUKHATME G. Opportunistic localization of underwater robots using drifters and boats[C]//IEEE International Conference on Robotics and Automation. St Paul, MN: IEEE, 2012: 5307-5314
    [5] RAMEZANI H, JAMALI-RAD H, LEUS G. Target localization and tracking for an isogradient sound speed profile[J]. IEEE Transactions on Signal Processing, 2013, 61(6): 1434-1446.
    [6] BALLARD M S, FRISK G V, BECKER K M. Estimates of the temporal and spatial variability of ocean sound speed on the New Jersey shelf[J]. Journal of the Acoustical Society of America, 2014, 135(6): 3316-3326.
    [7] RAMEZANI H, JAMALI-RAD H, LEUS G. Localization and tracking of a mobile target for an isogradient sound speed profile[C]//IEEE International Conference on Communications. Ottawa, Canada: IEEE, 2012: 3654-3658.
    [8] BARNARD T E, KLEIN F J, RESCA L. Ray theory results and ray wavefront diagrams for the hyperbolic cosine propagation sound-speed profile[J]. IEEE Journal of Oceanic Engineering, 2015, 40(4): 938-946.
    [9] 梁国龙, 林旺生, 王燕. 浅海信道有效声速估计及其在水声定位中的应用[J]. 声学技术, 2012, 31(1): 42-47. LIANG Guolong, LIN Wangsheng, WANG Yan. Estimation of effective sound velocity in shallow channel and its application in underwater acoustic positioning[J]. Technical Acoustics, 2012, 31(1): 42-47.
    [10] 陆秀平, 边少锋, 黄谟涛, 等. 常梯度声线跟踪中平均声速的改进算法[J]. 武汉大学学报(信息科学版), 2012, 37(5): 590-593. LU Xiuping, BIAN Shaofeng, HUANG Motao, et al. An improved method for calculating average sound speed in constant gradient sound ray tracing technology[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 590-593.
    [11] CASALINO G, TURETTA A, SIMETTI E, et al. RT2: A real-time ray-tracing method for acoustic distance evaluations among cooperating AUVs[C]//Oceans-IEEE. Sydney, Australia: IEEE, 2010: 1-8.
    [12] BATISTA P, SILVESTRE C, OLIVEIRA P. Sensor-based long baseline navigation: Observability analysis and filter design[J]. Asian Journal of Control, 2014, 16(4): 974-994.
    [13] YANG Fanlin, LU Xiushan, LI Jiabiao, et al. Precise positioning of underwater static objects without sound speed profile[J]. Marine Geodesy, 2011, 34(2): 138-151.
    [14] YAN W, CHEN W, CUI R. Moving long baseline positioning algorithm with uncertain sound speed[J]. Journal of Mechanical Science and Technology, 2015, 29(9): 3995-4002
    [15] VINCENT H T. Models, algorithms, and measurements for underwater acoustic positioning[D]. Kingston: University of Phode Island, 2001
    [16] PORTER M B. The BELLHOP manual and user’s guide: Preliminary draft[OL]. (2011-1-31)[2015-11-1]. http://oalib.hlsresearch.com/Rays/HLS-2010-1.pdf.
    [17] 易昌华, 任文静, 王钗. 二次水声定位系统误差分析[J]. 石油地球物理勘探, 2009, 44(2): 136-139. YI Changhua, REN Wenjing, WANG Chai. Analysis on error of secondary acoustic positioning system[J]. Oil Geophysical Prospecting, 2009, 44(2): 136-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700