用户名: 密码: 验证码:
基于概率风险分析的填埋场安全防护距离研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A probabilistic risk-based method to determine the safety protection distance for solid waste landfill
  • 作者:徐亚 ; 刘玉强 ; 能昌信 ; 王琪 ; 黄启飞 ; 董路
  • 英文作者:XU Ya;LIU Yu-qiang;NAI Chang-xin;WANG Qi;HUANG Qi-fei;DONG Lu;State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences;Research Institute of Solid Waste Management, Chinese Research Academy of Environment Sciences;Engineering Research Center for Groundwater Pollution Control and Remediation, Beijing Normal University;College of Water Science, Beijing Normal University;
  • 关键词:概率风险 ; 安全防护距离 ; 渗滤液 ; 健康风险
  • 英文关键词:probabilistic risk;;safety protection distance;;leachate;;health risk
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:中国环境科学研究院环境基准与风险评估国家重点实验室;中国环境科学研究院固体废物污染控制技术研究所;北京师范大学地下水污染控制与修复教育部工程研究中心;北京师范大学水科学学院;
  • 出版日期:2017-07-20
  • 出版单位:中国环境科学
  • 年:2017
  • 期:v.37
  • 基金:国家科技支撑计划(2014BAL02B03);; 国家自然科学基金项目(61503219);; 中央级院所基本科研业务专项重点项目(2016YSKY14);; 山东省自然科学基金(ZR2014DL008)
  • 语种:中文;
  • 页:ZGHJ201707051
  • 页数:7
  • CN:07
  • ISSN:11-2201/X
  • 分类号:388-394
摘要
针对危险废物填埋场(HWL)的建设运行现状和环境事故发生特点,确定以防渗层事故性破损为最大可信事故,以破损后渗滤液渗漏导致的人体健康危害为目标,提出了基于概率风险的HWL安全防护距离(SPD)确定的基本原则、方法和流程.对中部地区某HWL的安全防护距离进行了计算和不确定性分析,结果表明:考虑不同防护对象(污染物)情形下,计算得到的SPD值有所差异:以Cr的致癌危害,Cr、无机氟化物和Zn的非致癌危害为防护对象时,SPD值分别等于620、448、355和0m;不确定性分析表明受降雨量、水文地质参数不确定性的影响,SPD值存在较大的不确定性,经过P95校正的SPD为990m,大于GB 18598-2001中规定的800m的防护距离;最后文章指出安全防护距离的确定受场区降雨和蒸发条件、水文地质条件、填埋场接纳和填埋废物类型及其防渗系统配置等诸多因素影响,因此应该针对不同填埋场及其特征划定其SPD值,不宜采用一刀切的方法,统一规定HWL的安全防护距离.
        Based on the analysis of hazardous waste landfill(HWL)'s characteristics of construction, operation and environmental accidents, this paper identifies its maximum credible accident as the damage of linear system, and determines the safety protection objective as preventing people around the site free from the harm due to drinking groundwater contaminated by leachate leakage. Furthermore, it proposes a probabilistic-risk based method, as well as principles and procedures underlying, to determining the Safety protection distance(SPD). This method was then applied to calculate the SPD for a HWL in the central China. The result indicates that: with the consideration of different contaminants, the SPD varies from the maximum value of 620 m for the protection purpose of Cr's carcinogenic effect, and the medium value of 448 m and 355 m for the protection purpose of Cr and inorganic fluoride's non-carcinogenic effect, to the minimum value of zero for the protection of Zn' hazardous effect. In addition, being influenced by the uncertainties of precipitation, depth of vandose and aquifer, and saturated permeability of vandose and aquifer, there is great uncertainties in the value of SPD. The corrective SPD is 990 m and greater than the value of 800 m regulated in the standard of GB 18598—2001. This paper finally pointed out that a specific value for each HWL with the consideration of variance in precipitation, hydrogeological condition, types and toxicities of received waste, and characteristics of linear system, rather than a uniform value for all HWL should be recommend in determining the SPD.
引文
[1]徐亚,刘玉强,刘景财,等.填埋场渗漏风险评估的三级PRA模型及案例研究[J].环境科学研究,2014,27(4):447-454.
    [2]席北斗.危险废物填埋场地下水污染风险评估和分级管理技术[M]北京:中国环境科学出版社,2012.
    [3]王刊良,徐寅峰,汪应洛.一个有害物品填埋场选址的决策支持系统[J].系统工程理论与实践,1997,11:60-65.
    [4]蔡木林,王琪,董路.危险废物填埋场候选厂址比选方法[J].环境科学研究.2005,18(增刊):53-56.
    [5]李东泉,李婧.从“阿苏卫事件”到《北京市生活垃圾管理条例》出台的政策过程分析:基于政策网络的视角[J].国际城市规划,2014,29(1):30-35.
    [6]环境保护部.GB18599-2001一般工业固体废物贮存、处置场污染控制标准[S].北京:中国环境科学出版社,2001.
    [7]GB18598-2001危险废物填埋场污染控制标准[S].
    [8]环境保护部.关于发布《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)等3项国家污染物控制标准修改单的公告[Z].北京:环境保护部,2013.
    [9]Jonkman S N,van Gelder P F.An overview of quantitative risk measures for loss of life and economic damage[J].Journal of Hazardous Material.2003,9(1):1-30.
    [10]Ale B J.Risk assessment practices in the Netherlands[J].Safety Science,2002,(40):105-126.
    [11]魏利军,多英全,于立见,等.化工园区安全规划方法与程序研究[J].中国安全科学学报,2007,(9):45-51.
    [12]William K,Mohammad M.A historical overview of probabilistic risk assessment development and its use in the nuclear power industry:a tribute to the late professor Norman Carl Rasmussen[J].Re1iabi1ity Engineering and System Safety,2005,(89):271-285.
    [13]Bottelberghs P H.Risk analysis and safety policy developments in the Netherlands[J].Journal of Hazardous Materials,2000,71(1-3):59-84.
    [14]Ulrich H.A risk-based approach to land-use planning[J].Journal of Hazardous Materials,2005,A125:1-9.
    [15]Thomas F,Sun P,Scott D,et al.Probabilistic assessment of environmental exposure to the polycyclic musk,HHCB and associated risks in wastewater treatment plant mixing zones and sludge amended soils in the United States[J].Science of The Total Environment,2014,493(15):1079-1087.
    [16]Chu Y L,Dalaijamts C,Sheen L Y,et al.Probabilistic risk assessment of exposure to leucomalachite green residues from fish products[J].Food and Chemical Toxicology,2013,62:770-776.
    [17]徐亚,颜湘华,董路,等.基于Landsim的填埋场长期渗漏的地下水污染风险评价[J].中国环境科学,2014,34(5):1355-1360.
    [18]于可利,刘华峰,李金惠,等.危险废物填埋设施的环境风险分析[J].环境科学研究,2005,18(sl):43-47.
    [19]Li Y F,Guo Y,Yu G.An analysis of extreme flood events during the past 400years at Taihu Lake[J].Journal of Hydrology,2013,500(13):217-225.
    [20]Ian C.Fuller.Geomorphic impacts of a 100-year flood:Kiwitea Stream,Manawatu catchment[J].Geomorphology,2008,98(1/2):84-95.
    [21]Drury D,Hall D H,Dowle J.The Development of Land Sim2.5.NGCLC Report GW/03/09.Environment Agency,Solihull.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700