用户名: 密码: 验证码:
国内外301份小麦品种(系)种子萌发期抗旱性鉴定及评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification and evaluation of drought tolerance of 301 wheatvarieties (lines) at germination stage
  • 作者:任毅 ; 颜安 ; 张芳 ; 夏先春 ; 谢磊 ; 耿洪伟
  • 英文作者:REN Yi;YAN AN;ZHANG Fang;XIA Xian-chun;XIE Lei;GENG Hong-wei;College of Agronomy, Key Laboratory of Agricultural Biological Technology, Xinjiang Agricultural University;College of Pratacultural and Environmental Sciences, Xinjiang Agricultural University;Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Wheat Improvement Center;
  • 关键词:小麦种质 ; 种子萌发期 ; 抗旱性鉴定 ; 聚类分析 ; 主成分分析
  • 英文关键词:wheat germplasm;;seed germination stage;;identification of drought tolerance;;cluster analysis;;principal components analysis
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:新疆农业大学农学院新疆农业大学生物技术重点实验室;新疆农业大学草业与环境科学学院;中国农业科学院作物科学研究所/国家小麦改良中心;
  • 出版日期:2019-05-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.174
  • 基金:新疆维吾尔自治区区域协同创新专项(2017E01007);; 新疆农业大学-南京农业大学联合基金项目(KXYJ201602);; 新疆农业大学研究生科研创新项目(XJAUGRI2016017)
  • 语种:中文;
  • 页:GHDQ201903002
  • 页数:14
  • CN:03
  • ISSN:61-1088/S
  • 分类号:7-20
摘要
以-0.5 MPa PEG-6000模拟干旱胁迫环境,对301份冬小麦品种(系)在人工气候箱内进行种子萌发培养,在发芽势、发芽率、发芽指数、根数、根长、苗高和胚芽鞘长度测定的基础上,应用隶属函数、聚类分析和因子分析等方法对小麦种子萌发期抗旱性进行综合评价。结果表明,PEG胁迫下各指标测量值较对照均下降,且各指标之间存在极显著或显著正相关。利用隶属函数法进行抗旱性分析,发现不同小麦品种(系)间表现出较大差异,D值的变幅为0.08~0.95。通过聚类分析,将材料按抗旱性强弱分为5类:藁城8901等8份品种(系)为高度抗旱型,周麦22等29份品种(系)为抗旱型,鲁麦8号等116份品种(系)为中等抗旱型,石4185等83份品种(系)为干旱敏感型,烟农18等65份品种(系)为干旱高度敏感型。主成分分析表明,发芽指数、根长和根数在萌发因子、伸长因子和根部性状因子中的载荷量分别为0.96,0.88和0.91。不同抗旱类型麦区间的分布表明,8份高度抗旱型小麦品种(系)均来自国内,其中5份来自北部冬麦区。综合评价得到萌发期高度抗旱型种质分别是川麦44、皖麦33、藁城8901、CA9719、周8425B、宁冬10、新麦37和CA0958。发芽指数、根长和根数可作为小麦萌发期抗旱性鉴定的可靠指标。北部冬麦区可作为挖掘抗旱关键种质的重点麦区。
        In this study, a simulated drought stress environment of-0.5 MPa PEG-6000 was used to germinate and culture the seeds of 301 winter wheat varieties(lines) in the artificial climate chamber during the germination period. The germination potential, germination rate, germination index, root number, root length, seedling height and coleoptile length were measured. The drought tolerance was evaluated by the membership function method, cluster analysis and factor analysis. The relative values of the indexes were significantly and positively correlated with those of the controls. Using membership function method to rank drought tolerance, it was found that there were great differences among wheat varieties, the range of D value was 0.08~0.95. By using cluster analysis, we divided all varieties into 5 groups according to drought tolerance. Eight varieties(lines) such as Gaocheng 8901 were highly drought resistant type; 29 varieties(lines) such as Zhoumai 22 were the drought-resistant type; 116 varieties(lines) such as Lumai 8 were the medium drought-resistant type; 83 varieties(lines) such as Shi 4185 were the drought-sensitive type; 65 varieties(lines) such as Yannong 18 were the highly sensitive drought type. The results of principal component analysis showed that the maximum load of germination index, root length and root number were 0.96, 0.88 and 0.91, respectively. The distribution of different drought tolerant types of wheat regions showed that 8 wheat varieties(lines) with high drought tolerance were all from China. Five of the germplasm were from the northern winter wheat region. The germplasms with high drought tolerance in germinating period were Chuanmai 44, Wanmai 33, Gaocheng 8901, CA9719, Zhou 8425 B, Ningdong 10, Xinmai 37 and CA0958. The germinating index, root length and root number can be used as reliable indicators for drought tolerance identification in the germinating stage of wheat, and the northern winter wheat region can be used as a key wheat area to excavate drought-tolerant critical germplasm.
引文
[1] 赵丽英,邓西平,山仑.水分亏缺下作物补偿效应类型及机制研究概述[J].应用生态学报,2004,15(3):523-526.
    [2] Lobell D B,Schlenker W,Costa-Roberts J.Climate trends and global crop production since 1980 [J].Science,2011,333(6042):616-620.
    [3] Mayer K F X,Rogers J,Dolezel J,et al.A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome [J].Science,2014,345(6194):1251788.
    [4] Tanno K,Willcox G.How fast was wild wheat domesticated?[J].Science,2006,311(576):1886.
    [5] Shao H B,Liang Z S,Shao M A,et al.Dynamic changes of anti-oxidative enzymes of 10 wheat genotypes at soil water deficits [J].Colloids and Surfaces B-Biointerfaces,2005,42(3):187-195.
    [6] 李国瑞,马宏亮,胡雯媚,等.西南麦区小麦品种萌发期抗旱性的综合鉴定及评价[J].麦类作物学报,2015,35(4):479-487.
    [7] Dodd G L,Donovan L A.Water potential and ionic effects on germination and seedling growth of two cold desert shrubs [J].American Journal of Botany,1999,86(8):1146-1153.
    [8] 孙绿,李玉刚,王圣健,等.模拟干旱条件下冬小麦品种萌发期抗旱性评价[J].干旱地区农业研究,2017,35(6):109-115.
    [9] 周国雁,隆文杰,雷涌涛,等.PEG处理下小麦种子萌发期的性状变化与品种抗旱性级别划分[J].西南农业学报,2015,28(6):2348-2354.
    [10] 景蕊莲,昌小平.小麦抗旱种质资源的遗传多样性[J].西北植物学报,2003,23(3):410-416.
    [11] 景蕊莲,昌小平.用渗透胁迫鉴定小麦种子萌发期抗旱性的方法分析[J].植物遗传资源学报,2003,4(4):292-296.
    [12] 曹俊梅,周安定,吴新元,等.不同基因型冬小麦抗旱性鉴定及相关抗旱指标分析[J].新疆农业科学,2011,48(12):2157-2164.
    [13] 周国雁,伍少云,隆文杰,等.云南省不同小麦资源种子萌发期抗旱性相关性状差异及与抗旱指数、抗旱系数的相关性[J].华南农业大学学报,2015,36(2):13-18.
    [14] 许红,刘杨,王威雁,等.冬小麦种子萌发期抗旱性的基因型差异[J].麦类作物学报,2014,34(10):1426-1432.
    [15] 贾寿山,朱俊刚,王曙光,等.山西小麦地方品种萌发期的抗旱性[J].华北农学报,2011,26(2):213-217.
    [16] 张龙龙,杨明明,董剑,等.三个小麦新品种萌发期和幼苗期抗旱性的综合评价[J].干旱地区农业研究,2016,34(6):228-234,279.
    [17] 李丰先,周宇飞,王艺陶,等.高粱品种萌发期耐碱性筛选与综合鉴定[J].中国农业科学,2013,46(9):1762-1771.
    [18] 曾凯,张恒斌,陈李淼,等.68份大豆品种资源在新疆灌区的农艺性状分析[J].中国油料作物学报,2017,39(5):615-622.
    [19] 胡一波,杨修仕,陆平,等.中国北部藜麦品质性状的多样性和相关性分析[J].作物学报,2017,43(3):464-470.
    [20] 崔俊美,张朝明,张怀渝,等.7个小麦品种的抗旱性比较[J].麦类作物学报,2015,35(11):1542-1550.
    [21] 曹勇,姬虎太,裴雪霞,等.PEG模拟干旱胁迫下6份冬小麦种子抗旱性评价[J].山西农业科学,2016,44(6):723-725.
    [22] 李国瑞,李朝苏,吴春,等.西南地区小麦品种萌发期抗旱性分析[J].干旱地区农业研究,2015,33(4):212-219.
    [23] 中国国家标准化管理委员会.GB/T21127-2007小麦抗旱性鉴定评价技术规范[S].北京:中国标准出版社,2007.
    [24] 杨进文,朱俊刚,王曙光,等.用GGE双标图及隶属函数综合分析山西小麦地方品种抗旱性[J].应用生态学报,2013,24(4):1031-1038.
    [25] Tobe K,Zhang L,Omasa K.Seed germination and seedling emergence of three annuals growing on desert sand dunes in China [J].Annals of Botany,2005,95(4):649-659.
    [26] 彭智,李龙,柳玉平,等.小麦芽期和苗期耐盐性综合评价[J].植物遗传资源学报,2017,18(4):638-645.
    [27] 汪灿,周棱波,张国兵,等.薏苡种质资源萌发期抗旱性鉴定及抗旱指标筛选[J].植物遗传资源学报,2017,18(5):846-859.
    [28] 徐宁,陈冰嬬,王明海,等.绿豆品种资源萌发期耐碱性鉴定[J].作物学报,2017,43(1):112-121.
    [29] 张宇君,赵丽丽,王普昶,等.燕麦萌发期抗旱指标体系构建及综合评价[J].核农学报,2017,31(11):2236-2242.
    [30] 赵倩,卢杰春,郑浩宇,等.红小豆萌发期耐旱种质筛选[J].土壤与作物,2017,6(1):39-44.
    [31] 俄有浩,霍治国,马玉平.北方春小麦种植区小麦种植结构变化的气候依据与冻害风险[J].自然灾害学报,2015,24(5):149-159.
    [32] 赵广才.中国小麦种植区划研究(一)[J].麦类作物学报,2010,30(5):886-895.
    [33] 隋月,黄晚华,杨晓光,等.气候变化背景下中国南方地区季节性干旱特征与适应Ⅱ.基于作物水分亏缺指数的越冬粮油作物干旱时空特征[J].应用生态学报,2012,23(9):2467-2476.
    [34] 黄晚华,隋月,杨晓光,等.气候变化背景下中国南方地区季节性干旱特征与适应.Ⅲ.基于降水量距平百分率的南方地区季节性干旱时空特征[J].应用生态学报,2013,24(2):397-406.
    [35] 徐利岗,周宏飞,杜历,等.1951-2008年中国西北干旱区降水时空变化及其趋势[J].中国沙漠,2015,35(3):724-734.
    [36] 钱正安,宋敏红,吴统文,等.世界干旱气候研究动态及进展综述(Ⅱ):主要研究进展[J].高原气象,2017,36(6):1457-1476.
    [37] 刘旭,李立会,黎裕,等.作物种质资源研究回顾与发展趋势[J].农学学报,2018,8(1):1-6.
    [38] 卢布,丁斌,吕修涛,等.中国小麦优势区域布局规划研究[J].中国农业资源与区划,2010,31(2):6-12,61.
    [39] 何中虎,庄巧生,程顺和,等.中国小麦产业发展与科技进步[J].农学学报,2018,8(1):99-106.
    [40] 房世波,齐月,韩国军,等.1961-2010年中国主要麦区冬春气象干旱趋势及其可能影响[J].中国农业科学,2014,47(9):1754-1763.
    [41] 唐建卫,殷贵鸿,高艳,等.小麦骨干亲本周8425B及其衍生品种(系)的农艺性状和加工品质综合分析[J].麦类作物学报,2015,35(6):777-784.
    [42] 邹少奎,殷贵鸿,唐建卫,等.黄淮主推小麦品种主要农艺性状配合力及遗传效应分析[J].麦类作物学报,2017,37(6):730-738.
    [43] 徐建文,居辉,梅旭荣,等.近30年黄淮海平原干旱对冬小麦产量的潜在影响模拟[J].农业工程学报,2015,31(6):150-158.
    [44] 王相权,黄辉跃,王仕林,等.四川冬小麦新品种(系)抗旱性鉴定及分析[J].中国农学通报,2014,30(15):39-45.
    [45] 高德荣,张晓,康建鹏,等.长江中下游麦区小麦迟播的不利影响及育种对策[J].麦类作物学报,2014,34(2):279-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700