用户名: 密码: 验证码:
黄河三角洲湿地土壤盐离子沿水盐梯度的变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variations in soil salt ions along a water and salinity gradient in the Yellow River Delta,China
  • 作者:赵庆庆 ; 白军红 ; 高永超 ; 王磊磊 ; 郑立稳 ; 王加宁 ; 张树岩
  • 英文作者:ZHAO Qing-qing;BAI Jun-hong;GAO Yong-chao;WANG Lei-lei;ZHENG Li-wen;WANG Jia-ning;ZHANG Shu-yan;Ecology Institute, Qilu University of Technology(Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology;State Key Laboratory of Water Environment Simulation, School of Environment,Beijing Normal University;Management Station of the Yellow River Mouth, National Nature Reserve of the Yellow River Delta;
  • 关键词:土壤盐分 ; 盐离子 ; 水盐梯度 ; 黄河三角洲 ; 滨海湿地
  • 英文关键词:soil salinity;;salt ions;;water and salinity gradient;;the Yellow River Delta;;coastal wetlands
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:齐鲁工业大学(山东省科学院)山东省科学院生态研究所山东省应用微生物重点实验室;北京师范大学环境学院水环境模拟国家重点实验室;黄河三角洲国家级自然保护区黄河口管理站;
  • 出版日期:2019-03-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.283
  • 基金:国家自然科学基金青年科学基金项目(41807396);; 国家重点研发计划项目(2017YFC0505906);; 山东省应用微生物重点实验室开放基金项目(SKLAM201802);; 北京师范大学学科交叉建设项目~~
  • 语种:中文;
  • 页:NHBH201903019
  • 页数:9
  • CN:03
  • ISSN:12-1347/S
  • 分类号:163-171
摘要
为了分析黄河三角洲滨海湿地土壤电导率及盐离子组成沿水盐梯度的分布规律,沿自黄河向海的方向选择了假尾拂子茅湿地、香蒲湿地、芦苇湿地、柽柳和盐地碱蓬混生湿地和盐地碱蓬湿地作为研究样地,于2014年在各类型湿地内采集0~50 cm的土壤,并测定土壤电导率和6种盐离子。结果表明,盐地碱蓬湿地0~50 cm土壤的电导率、钠离子、钾离子和氯离子显著高于其他湿地(P<0.05),镁离子、钙离子和硫酸根离子的最高值则出现在柽柳和盐地碱蓬混生湿地。在剖面方向上,电导率和6种盐离子表现出不同的变化趋势。线性相关分析表明,土壤电导率和6种盐离子呈显著正相关关系(P<0.05)。土壤电导率和盐离子在2014年均表现出强变异特征。研究表明,沿自河向海的水盐梯度,湿地土壤电导率、钠离子、钾离子、镁离子、钙离子、氯离子和硫酸根离子总体呈现逐渐上升的趋势,土壤电导率的变化主要受钠离子和氯离子含量变化的影响。
        Soil samples were collected to a depth of 50 cm in the Yellow River Delta Nature Reserve, including Calamagrostis pseudophragmites wetlands(S1), Typha orientalis wetlands(S2), Phragmites australis wetlands(S3), Tamarix chinensis and Suaeda salsa wetlands(S4)and Suaeda salsa wetlands(S5), along a gradient of water and salinity in four seasons of 2014. Soil electrical conductivity(EC)and the concentrations of six salt ions(Na+, K+, Ca2+, Mg2+, Cl-and SO24-)were analyzed to investigate the effects of water and salinity gradient on soil salinity. The results showed that soil EC, Na+, K+,and Cl-in Suaeda salsa wetlands were significantly higher than those in the other wetlands(P<0.05), while the highest value of Mg2+, Ca2+, and SO24-occurred in Tamarix chinensis and Suaeda salsa wetland soils. Along the 0~50 cm soil profile, soil EC and salt ions showed different trends. Soil EC was linearly and significantly positively correlated with six salt ions(P<0.05). Furthermore, strong variability was observed in soil EC and salt ions in five wetlands. Our results indicated that soil EC and six salt ions increased along the water and salinity gradient from the Yellow River to the sea, and soil EC was mainly affected by the changes of Na+and Cl-.
引文
[1] Dang D M, Macdonald B, Warneke S, et al. Available carbon and nitrate increase greenhouse gas emissions from soils affected by salinity[J]. Soil Research, 2017, 55(1):47-57.
    [2] Nouri H, Chavoshi Borujeni S, Nirola R, et al. Application of green remediation on soil salinity treatment:A review on halophytoremediation[J]. Process Safety and Environmental Protection, 2017, 107:94-107.
    [3] Herbert E R, Boon P, Burgin A J, et al. A global perspective on wetland salinization:Ecological consequences of a growing threat to freshwater wetlands[J]. Ecosphere, 2015, 6(10):1-43.
    [4] Chambers L G, Reddy K R, Osborne T Z. Short-term response of carbon cycling to salinity pulses in a freshwater wetland[J]. Soil Science Society of America Journal, 2011, 75(5):2000-2007.
    [5] Campo J, Maass J M, Jaramillo V J, et al. Calcium, potassium, and magnesium cycling in a Mexican tropical dry forest ecosystem[J]. Biogeochemistry, 2000, 49(1):21-36.
    [6]姜林,耿增超,李珊珊,等.祁连山西水林区土壤阳离子交换量及盐基离子的剖面分布[J].生态学报, 2012, 32(11):3368-3377.JIANG Lin, GENG Zeng-chao, LI Shan-shan, et al. Soil cation exchange capacity and exchangeable base cation content in the profiles of four typical soils in the Xi-Shui Forest Zone of the Qilian Mountains[J]. Acta Ecologica Sinica, 2012, 32(11):3368-3377.
    [7] Horton D J, Theis K R, Uzarski D G, et al. Microbial community structure and microbial networks correspond to nutrient gradients within coastal wetlands of the Great Lakes[J]. BioRxiv, 2018. doi:https://doi.org/10. 1101/217919.
    [8]陈永金,刘加珍,刘亚琦,等.黄河河口湿地潮汐作用下土壤盐分异质响应研究[J].聊城大学学报(自然科学版), 2014, 27(4):72-77.CHEN Yong-jin, LIU Jia-zhen, LIU Ya-qi, et al. Research on heterogeneous response of soil salinity to tidal action in the estuary of Yellow River[J]. Journal of Liaocheng University(Nat Sci), 2014, 27(4):72-77.
    [9]张蛟,崔士友,冯芝祥,等.气候因子和地表覆盖对沿海滩涂土壤盐分动态的影响[J].中国生态农业学报, 2018, 26(2):294-302.ZHANG Jiao, CUI Shi-you, FENG Zhi-xiang, et al. Climate factors and mulching affect soil salinity dynamics in coastal areas[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2):294-302.
    [10]王艳,廉晓娟,张余良,等.天津滨海盐渍土水盐运动规律研究[J].天津农业科学, 2012, 18(2):95-97, 101.WANG Yan, LIAN Xiao-juan, ZHANG Yu-liang, et al. Study on water-salt movement of coastal saline soil in Tianjin[J]. Tianjin Agricultural Sciences, 2012, 18(2):95-97, 101.
    [11]崔保山,谢湉,王青,等.大规模围填海对滨海湿地的影响与对策[J].中国科学院院刊, 2017, 32(4):418-425.CUI Bao-shan, XIE Tian, WANG Qing, et al. Impact of large-scale Reclamation on coastal wetlands and implications for ecological restoration, compensation, and sustainable exploitation framework[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(4):418-425.
    [12]刘莉,韩美,刘玉斌,等.黄河三角洲自然保护区湿地植被生物量空间分布及其影响因素[J].生态学报, 2017, 37(13):4346-4355.LIU Li, HAN Mei, LIU Yu-bin, et al. Spatial distribution of wetland vegetation biomass and its influencing factors in the Yellow Rvier Delta Nature Reserve[J]. Acta Ecologica Sinica, 2017, 37(13):4346-4355.
    [13]李晓晓,杨薇,孙涛,等.黄河故道尾闾湿地大型底栖动物群落对生态补水的响应研究[J].北京师范大学学报(自然科学版),2018, 54(1):64-72.LI Xiao-xiao, YANG Wei, SUN Tao, et al. Ecological responses of macrobenthic community to freshwater replenishment in the tail wetland of old Yellow River[J]. Journal of Beijing Normal University(Natural Sciences), 2018, 54(1):64-72.
    [14] Gao H F, Bai J H, Xiao R, et al. Soil net nitrogen mineralization in salt marshes with different flooding periods in the Yellow River Delta,China[J]. CLEAN–Soil, Air, Water, 2012, 40(10):1111-1117.
    [15] Jiang Y, Hao W, Zhang Y, et al. Geostatistical analyses of soil electrical conductivity in a vegetable greenhouse field with different data sets[J]. Environmental Research Journal, 2008, 2(3):125-130.
    [16] Yu Y, Wang H, Liu J, et al. Shifts in microbial community function and structure along the successional gradient of coastal wetlands in Yellow River Estuary[J]. European Journal of Soil Biology, 2011, 49(2):12–21.
    [17]付颖.天津滨海盐碱土水盐动态及有机改良剂的改良效果研究[D].北京:北京林业大学, 2015.FU Ying. Dynamics of water and salt in the Tianjin Binhai Saline soil and the effectiveness of organic modifier[D]. Beijing:Beijing Forestry University, 2015.
    [18] Marandi A, Polikarpus M, J?eleht A. A new approach for describing the relationship between electrical conductivity and major anion concentration in natural waters[J]. Applied Geochemistry, 2013, 38:103-109.
    [19]翁永玲,宫鹏,黄河三角洲盐渍土盐分特征研究[J].南京大学学报:自然科学版, 2006, 42(6):602-610.WENG Yong-ling, GONG Peng. Soil salinity measurements on the Yellow River Delta[J]. Journal of Nanjing University(Natural Sciences), 2006, 42(6):602-610.
    [20]张玉革,梁文举,姜勇.不同利用方式下潮棕壤交换性钙镁的剖面分布[J].应用生态学报, 2008, 19(4):813-818.ZHANG Yu-ge, LIANG Wen-ju, JIANG Yong. Profile distribution of exchangeable calcium and magnesium in an aquatic brown soil as affected by land use type[J]. Chinese Journal of Applied Ecology, 2008,19(4):813-818.
    [21]张天举,陈永金.滨海湿地土壤表层盐分在不同群落的变异分析[J].科技资讯, 2017, 15(5):117-120.ZHANG Tian-ju, CHEN Yong-jin. Analysis of soil salt in surface soils of different vegetation types in coastal wetlands[J]. Science&Technology Information, 2017, 15(5):117-120.
    [22]张立华,陈沛海,李健,等.黄河三角洲柽柳植株周围土壤盐分离子的分布[J].生态学报, 2016, 36(18):5741-5749.ZHANG Li-hua, CHEN Pei-hai, LI Jian, et al. Distribution of soil salt ions around Tamarix chinensis individuals in the Yellow River Delta[J]. Acta Ecologica Sinica, 2016, 36(18):5741-5749.
    [23]刘玉斌,韩美,刘延荣,等.黄河三角洲土壤盐分养分空间分异规律研究[J].人民黄河, 2018, 40(2):76-80.LIU Yu-bin, HAN Mei, LIU Yan-rong, et al. Spatial distribution of soil salinity and nutrients in the Yellow River Delta[J]. Yellow River,2018, 40(2):76-80.
    [24]安乐生,周葆华,赵全升,等.黄河三角洲土壤氯离子空间变异特征及其控制因素[J].地理科学, 2015, 35(3):358-364.AN Le-sheng, ZHOU Bao-hua, ZHAO Quan-sheng, et al. Spatial variability of soil chloride content and its driving factors in the Huanghe River Delta[J]. Scientia Geographica Sinica, 2015, 35(3):358-364.
    [25]于洋.城市中街尘金属的分布与污染源分析[D].北京:北京师范大学, 2017.YU Yang. Distribution and source analysis of metals in urban street dust[D]. Beijing:Beijing Normal University, 2017.
    [26]李章平.重庆市主城区街道灰尘的污染与风险特征研究[D].重庆:西南大学, 2012.LI Zhang-ping. Analysis of pollution and risk of street dust in core district of Chongqing[D]. Chongqing:Southwest University, 2012.
    [27] Rath K M, Rousk J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling:A review[J]. Soil Biology and Biochemistry, 2015, 81:108-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700