用户名: 密码: 验证码:
棉花光籽基因n_2的精细定位
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fine Mapping of the Fuzzless Gene n_2 in Cotton
  • 作者:李思敏 ; 左东云 ; 程海亮 ; 张友平 ; 王巧连 ; 刘珂 ; 冯晓旭 ; 耿洪伟 ; 宋国立
  • 英文作者:Li Simin;Zuo Dongyun;Cheng Hailiang;Zhang Youping;Wang Qiaolian;Liu Ke;Feng Xiaoxu;Geng Hongwei;Song Guoli;Xinjiang Agricultural University;Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology;
  • 关键词:陆地棉 ; 纤维 ; 光籽突变体 ; 精细定位 ; 表达分析
  • 英文关键词:Upland cotton;;fiber;;fuzzless mutant;;fine mapping;;expression analysis
  • 中文刊名:MHXB
  • 英文刊名:Cotton Science
  • 机构:新疆农业大学;中国农业科学院棉花研究所/棉花生物学国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:棉花学报
  • 年:2019
  • 期:v.31
  • 基金:国家重点研发计划(2018YFD0100402)
  • 语种:中文;
  • 页:MHXB201902003
  • 页数:7
  • CN:02
  • ISSN:41-1163/S
  • 分类号:30-36
摘要
【目的】棉纤维是由胚珠外珠被表皮单细胞经突起并极性伸长而成的,棉花种子上的短绒是由胚珠外珠被表皮单细胞突起而产生的。因此,本研究对棉纤维光籽基因n_2进行定位,旨在为其克隆和功能研究奠定基础。【方法】以海岛棉新海21和陆地棉光籽突变体n_2为亲本构建F_2群体,结合棉花基因组数据,开发简单序列重复标记,定位该基因,获得预测的基因序列,通过实时荧光定量聚合酶链式反应分析候选基因的表达量差异。【结果】光籽基因n_2被定位在染色体A12上,位于标记P61与Z10之间的181 kbp内。该区间共有7个候选基因。实时荧光定量聚合酶链式反应分析显示,候选基因72098在2个亲本中的表达量有显著差异。【结论】本试验精细定位了光籽基因n_2,初步分析了候选基因,为其图位克隆和功能验证奠定了基础。
        [Objective] Cotton fibers are single cells derived from the ovule epidermis, cotton fuzz of seeds are also formed by the ovule epidermis. Therefore, we conduct this experiment to locate the fuzzless gene n_2 so as to lay a foundation for its clone and function study. [Method] Two F_2 populations derived from a cross between the Xinhai 21 and the fuzzless mutant of upland cotton(Gossypium hirsutum L.) n_2 was constructed. Combined with cotton genomic data and developed simple sequence repeat markers to locate the gene. The predicted gene sequence was acquired and the differences in its expression in two parents were analyzed by using the quantitative real time polymerase chain reaction method. [Result] The fuzzless gene was located in a 181 kbp region on chromosome A12 within markers P61 and Z10. There are seven candidate genes in the region. Quantitative real time polymerase chain reaction verification shows significant differences in the expression of 72098 gene in two parents.[Conclusion] In this experiment, the fine mapping and candidate genes analysis of gene n_2 were completed, which laid a foundation for n_2 gene cloning and functional verification.
引文
[1]Arpat A,Waugh M,Sullivan J P,et al.Functional genomics of cell elongation in developing cotton fibers[J].Plant Molecular Biology,2004,54(6):911-929.
    [2]Lee J J,Woodward A W,Chen Z J.Gene expression changes and early events in cotton fibre development[J].Annals of Botany,2007,100(7):1391-1401.
    [3]Paterson A H,Wendel J F,Gundlach H,et al.Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J].Nature,2012,492(7429):423-437.
    [4]Yang Zuoren,Zhang Chaojun,Yang Xiaojie,et al.PAG1,a cotton brassinosteroid catabolism gene,modulates fiber elongation[J].New Phytologist,2014,203(2):437-448.
    [5]左东云,叶武威,程海亮,等.棉花功能基因组研究进展[J].棉花学报,2017,29(Suppl):20-27.Zuo Dongyun,Ye Wuwei,Cheng Hailiang,et al.The progress and perspective of cotton functional genomics research[J].Cotton Science,2017,29(Suppl):20-27.
    [6]Hulskamp M,Misra S,Jurgens G.Genetic dissection of trichome cell development in Arabidopsis[J].Cell,1994,76(3):555-566.
    [7]Payne C T,Zhang F,Lloyd A M.GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J].Genetics,2000,156(3):1349-1362.
    [8]Szymanski D B,Lloyd A M,Marks M D.Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis[J].Trends in Plant Science,2000,5(5):214-219.
    [9]Guan Xueying,Yu Nannan,Shangguan Xiaoxia,et al.Arabidopsis trichome research sheds light on cotton fiber development mechanisms[J].Chinese Science Bulletin,2007,52(13):1734-1741.
    [10]Lee J J,Woodward A W,Chen Z J.Gene expression changes and early events in cotton fibre development[J].Annals of Botany,2007,100(7):1391-1401.
    [11]Wu Huaitong,Tian Yue,Wan Qun,et al.Genetics and evolution of MIXTA genes regulating cotton lint fiber development[J].New Phytologist,2018,217(2):883-895.
    [12]Wan Qun,Guan Xueying,Yang Nannan,et al.Small interfering RNAs from bidirectional transcripts of GhMML3-A12 regulate cotton fiber development[J].New Phytologist,2016,210(4):1298-1310.
    [13]Thyssen G N,Fang D D,Turley R B,et al.A Gly65Val substitution in an actin,GhACT-LI1,disrupts cell polarity and F-actin organization resulting in dwarf,lintless cotton plants[J].Plant Journal for Cell&Molecular Biology,2017,90(1):111-121.
    [14]Zhu Qianhao,Yuan Yuman,Stiller W,et al.Genetic dissection of the fuzzless seed trait in Gossypium barbadense[J].Journal of Experimental Botany,2018,69(5):997-1009.
    [15]Thadani K I.Inheritance of certain characters in Gossypium[J].Indian Journal of Agricultural Sciences,1925,20(3):37-42.
    [16]Turley R B,Kloth R H.Identification of a third fuzzless seed locus in upland cotton(Gossypium hirsutum L.)[J].Journal of Heredity,2002,93(5):359-364.
    [17]Kohel R J,Yu J,Park Y H,et al.Molecular mapping and characterization of traits controlling fiber quality in cotton[J].Euphytica,2001,121(2):163-172.
    [18]Endrizzi J E,Ramsay G.Identification of ten chromosome deficiencies of cotton:Cytological identification of eight chromosomes and genetic analysis of chromosome deficiencies and marker genes[J].Journal of Heredity,1980,71(1):45-48.
    [19]Rong Junkang,Pierce G J,Waghmare V N,et al.Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton[J].Theoretical&Applied Genetics,2005,111(6):1137-1146.
    [20]宋丽,郭旺珍,秦鸿德,等.棉花光子基因N1和n2的遗传分析及染色体定位的分子证据[J].南京农业大学学报,2010,33(1):21-26.Song Li,Guo Wangzhen,Qin Hongde,et al.Genetic analysis and molecular validation of chromosome assignment for fuzzless genes N1and n2in cotton[J].Journal of Nanjing Agricultural University,2010,33(1):21-26.
    [21]Du Xiongming,Pan Jiaju,Zhang Tianzhen,et al.Genetic analysis of presence and absence of lint and fuzz in cotton[J].Plant Breeding,2001,120(6):519-522.
    [22]丁业掌,郭旺珍,张天真.陆地棉两个纤维突变体的遗传分析[J].棉花学报,2007,19(3):179-182.Ding Yezhang,Guo Wangzhen,Zhang Tianzhen.Genetic analysis of two mutants of fiber in Gossypium hirsutum L.[J].Cotton Science,2007,19(3):179-182.
    [23]宋国立,崔荣霞,王坤波,等.改良CTAB法快速提取棉花DNA[J].棉花学报,1998(5):273-275.Song Guoli,Cui Rongxia,Wang Kunbo,et al.A rapid improved CTAB method for extraction of cotton genomic DNA[J].Cotton Science,1998(5):273-275.
    [24]张兴华,李捷.棉黄萎病发生和研究进展[J].江西农业学报,2006,18(1):99-104.Zhang Xinghua,Li Jie.Advance in occurrence and researches on cotton Verticillium wilt[J].Acta Agriculturae Jiangxi,2006,18(1):99-104.
    [25]Wang Kunbo,Wang Zhiwen,Li Fuguang,et al.The draft genome of a diploid cotton Gossypium raimondii[J].Nature Genetics,2012,44(10):1098-1103.
    [26]Li Fuguang,Fan Guangyi,Wang Kunbo,et al.Genome sequence of the cultivated cotton Gossypium arboreum[J].Nature Genetics,2014,46(6):567-572.
    [27]Li Fuguang,Fan Guangyi,Lu Cairui,et al.Genome sequence of cultivated upland cotton(Gossypium hirsutum TM-1)provides insights into genome evolution[J].Nature Biotechnology,2015,33(5):524-530.
    [28]Ivashuta S,Liu Jinyuan,Liu Junqi,et al.RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development[J].The Plant Cell,2005,17(11):2911-2921.
    [29]Yoon G M,Dowd P E,Gilroy S,et al.Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth,including regulating polarity[J].The Plant Cell,2006,18(4):867-878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700