用户名: 密码: 验证码:
相分离丙烯酸树脂/SiO_2复合超疏水薄膜的制备及其性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Performance of Acrylic Resin/SiO_2 Composite Superhydrophobic Film Based on Phase Separation
  • 作者:余晨晨 ; 朱佳雯 ; 李想 ; 杨芮 ; 卢杨 ; 危大福 ; 许祥 ; 管涌
  • 英文作者:YU Chenchen;ZHU Jiawen;LI Xiang;YANG Rui;LU Yang;WEI Dafu;XU Xiang;GUAN Yong;Key Laboratory for Preparation and Application of Ultra Fine Materials of Ministry of Education,School of Materials Science and Engineering,East China University of Science and Technology;
  • 关键词:相分离 ; 超疏水薄膜 ; 丙烯酸树脂 ; 纳米二氧化硅 ; 耐磨性
  • 英文关键词:phase separation;;superhydrophobic film;;acrylic resin;;nano SiO_2;;mechanical durability
  • 中文刊名:GNGF
  • 英文刊名:Journal of Functional Polymers
  • 机构:华东理工大学材料科学与工程学院超细材料制备与应用教育部重点实验室;
  • 出版日期:2018-06-20 15:03
  • 出版单位:功能高分子学报
  • 年:2019
  • 期:v.32
  • 基金:国家自然科学基金(51573043)
  • 语种:中文;
  • 页:GNGF201902010
  • 页数:7
  • CN:02
  • ISSN:31-1633/O6
  • 分类号:91-97
摘要
基于溶剂诱导相分离法,将丙烯酸树脂薄膜在含有二氧化硅和异氰酸酯三聚体交联剂的乙酸乙酯(良溶剂)和乙醇(不良溶剂)的混合溶剂中浸渍提拉,获得具有多孔结构的超疏水薄膜。分别用红外光谱、扫描电镜表征了超疏水薄膜的结构和形貌,并测试了其疏水性、自清洁性及耐磨性。当混合溶剂中乙酸乙酯与乙醇的体积比为6∶4、SiO_2的质量浓度为0.025g/mL时,超疏水薄膜的水接触角可达158°±3°,且经历35个周期的砂纸磨损(100g载重)后仍保持超疏水性,具备良好的自清洁性与耐磨性。
        A simple and effective approach was reported to fabricate a low-cost,environment-friendly,selfcleaning and mechanically durable superhydrophobic film.The film was prepared by dip-coating acrylic resin film in an ethanol/ethyl acetate suspension of nano SiO_2(n-SiO_2)and hexamethylene diisocyanate trimer(HDI trimer).Since the solubility of acrylic resin in ethyl acetate(solvent)differs from in ethanol(non-solvent),aporous structure was formed on the film surface based on phase separation.SEM images showed that as the volume ratio of ethyl acetate in mixture increased,the coated surfaces became fluffier and internal pores were larger.By contrast,the porous structures were more uniform and complete when the volume ratio of ethanol to ethyl acetate reached 6∶4 in solvent mixture.With a further addition of n-SiO_2,the hydrophobicity of the film was greatly enhanced.Porous structures were also observed after n-SiO_2 was added,and more nanoparticles were deposited on the inner wall of the holes as the content of n-SiO_2 increased,which helped to form a dense nanoscale layer during phase separation process.The synergistic effect of nanoscale n-SiO_2 and microscopic holes endowed the film with a remarkable superhydrophobicity(158°±3°)and self-cleaning property when 2.5 g of n-SiO_2 was added.Moreover,acrylic resin and n-SiO_2 were further cured by HDI trimer through the reaction between isocyanate groups and hydroxyl groups,which improved the mechanical properties of the superhydrophobic film.The performance test showed that the film still kept its superhydrophobicity after 35 cycles of sandpaper abrasion under 100 g of loading,indicating apretty admirable mechanical durability.The facile preparation and high-performance of the superhydrophobic film make it quite suitable for the manufacture in a large scale,which would have extensive application prospects in the future.
引文
[1]MARMUR A.The lotus effect:Superhydrophobicity and metastability[J].Langmuir the Acs Journal of Surfaces&Colloids,2004,20(9):3517-3519.
    [2]LEE H J,MICHIELSEN S.Lotus effect:Superhydrophobicity[J].Journal of the Textile Institute Proceedings&Abstracts,2006,97(5):455-462.
    [3]GAO X,JIANG L.Biophysics:Water-repellent legs of water striders[J].Nature,2004,432(7013):36.
    [4]叶霞,周明,李健,等.从自然到仿生的超疏水表面的微观结构[J].纳米技术与精密工程,2009,7(5):381-386.
    [5]FURSTNER R,BARTHLOTT W,NEINHUIS C,et al.Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J].Langmuir the Acs Journal of Surfaces&Colloids,2005,21(3):956-961.
    [6]CAO L,JONES A K,SIKKA V K,et al.Anti-icing superhydrophobic coatings[J].Langmuir the Acs Journal of Surfaces&Colloids,2009,25(21):12444-12448.
    [7]FAN Y,HE Y,LUO P,et al.Facile way in building superhydrophobic zirconium surface for controllable water-oil separation[J].Materials Letters,2017,188(20):115-118.
    [8]MING Z,JIAN L,WU C,et al.Fluid drag reduction on superhydrophobic surfaces coated with carbon nanotube forests(CNTs)[J].Soft Matter,2011,7(9):4391-4396.
    [9]LEE Y,PARK S,KIM K,et al.Fabrication of hierarchical structures on a polymer surface to mimic natural superhydrophobic surfaces[J].Advanced Materials,2007,19(17):2330-2335.
    [10]BRASSARD J D,SARKAR D K,PERRON J.Fluorine based superhydrophobic coatings[J].Applied Sciences,2012,2(4):453-464.
    [11]OGAWA T,DING B,SONE Y,et al.Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes[J].Nanotechnology,2007,18(16):695-700.
    [12]KENNETH K S L,JOSE B,KENNETH B K T,et al.Superhydrophobic carbon nanotube forests[J].Nano Letters,2011,3(12):1701-1705.
    [13]黄明达,钱欣,冯杰.拉伸微模塑制备低密度聚乙烯超疏水表面[J].功能高分子学报,2009,22(2):188-192.
    [14]林飞云,冯杰,黄明达,等.基于不锈钢模板热压微模塑构建聚乙烯超疏水表面[J].功能高分子学报,2010,23(2):211-214.
    [15]张守村,孙武,皮茂.高内相乳液模板法制定淀粉基大孔材料及表征[J].功能高分子学报,2018,31(3):273-278.
    [16]隋晶,黎玮,潘庆燕.囊泡模板法制备PEDOT空心微球及其对抗坏血酸的电催化氧化性能[J].功能高分子学报,2015,28(4):380-385.
    [17]郑振荣,吴涛林.超疏水棉织物的简易制备技术[J].纺织学报,2013,34(9):94-98.
    [18]TADANAGA K,KITAMURO K,MATSUDA A,et al.Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method[J].Journal of Sol-Gel Science and Technology,2003,26(2):705-708.
    [19]QIAN B,SHEN Z.Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum,copper,and zinc substrates[J].Langmuir the Acs Journal of Surfaces&Colloids,2005,21(20):9007-9009.
    [20]ZHAO N,XIE Q,WENG L,et al.Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution[J].Macromolecules,2005,38(22):8996-8999.
    [21]LIU J,XIAO X,SHI Y,et al.Fabrication of a superhydrophobic surface from porous polymer using phase separation[J].Applied Surface Science,2014,297(4):33-39.
    [22]ERBIL H Y,DEMIREL A L,AVCI Y,et al.Transformation of a simple plastic into a superhydrophobic surface[J].Science,2003,299(5611):1377-1380.
    [23]LU X,ZHANG C,HAN Y.Low-density polyethylene superhydrophobic surface by control of its crystallization behavior[J].Macromolecular Rapid Communications,2004,25(18):1606-1610.
    [24]WANG M F,RAGHYNATHAN N,ZIAIE B.A nonlithographic top-down electrochemical approach for creating hierarchical(micro-nano)superhydrophobic silicon surfaces[J].Langmuir the Acs Journal of Surfaces&Colloids,2007,23(5):2300-2303.
    [25]YE H,ZHU L,LI W,et al.Constructing fluorine-free and cost-effective superhydrophobic surface with normal-alcoholmodified hydrophobic SiO2nanoparticles[J].Acs Applied Materials&Interfaces,2016,9(1):858-867.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700