用户名: 密码: 验证码:
红树林湿地污水消纳过程中厌氧氨氧化菌存在特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Existence characteristics of anaerobic ammonia oxidizing bacteria in wastewater treatment process from mangrove wetland
  • 作者:李杰 ; 韩芸 ; 廖杰 ; 张婷凤 ; 刘琳 ; 徐开钦 ; 刘超翔
  • 英文作者:LI Jie;HAN Yun;LIAO Jie;ZHANG Tingfeng;LIU Lin;XU Kaiqin;LIU Chaoxiang;Key Lab of Northwest Water Resources, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi′an University of Architecture and Technology;Institute of Urban Environment,Chinese Academy of Sciences;School of Environmental Science and Engineering, Xiamen University of Technology;National Institute of Environmental Studies;
  • 关键词:厌氧氨氧化菌 ; 丰度分布 ; 相对丰度分布 ; 环境因子
  • 英文关键词:anammox bacteria;;abundance distribution;;relative abundance distribution;;environmental factors
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:西安建筑科技大学环境与市政工程学院西北水资源与环境生态教育部重点实验室;中国科学院城市环境研究所;厦门理工学院环境科学与工程学院;日本国立环境研究所;
  • 出版日期:2018-09-27 17:06
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:福建省教育厅项目(No.JAT17041);; 福建省科技厅STS项目(No.2016T3006);; 福建省科技计划对外合作项目(No.2016I0016);; 陕西省自然科学基金(No.2017JM5090)
  • 语种:中文;
  • 页:HJXX201902026
  • 页数:9
  • CN:02
  • ISSN:11-1843/X
  • 分类号:234-242
摘要
厌氧氨氧化过程作为滨海生态系统氮去除的有效途径,对维持滨海生态系统氮元素收支平衡具有重要意义.本研究采用基于16S rRNA基因的荧光定量PCR(qPCR)技术,并结合环境因子,对红树林湿地中厌氧氨氧化菌基因丰度和相对丰度的存在特征进行考察.结果表明,在红树林湿地0~65 cm深度的沉积物中均检出厌氧氨氧化菌,随距排污口距离及深度的增加,本研究中厌氧氨氧化菌基因丰度和相对丰度未发现明显的分布规律.相关性分析表明,厌氧氨氧化菌基因丰度和相对丰度在红树林湿地沉积物中的空间分布与环境因子密切相关,厌氧氨氧化菌基因丰度与总氮(TN)、总有机碳(TOC)和总碳(TC)呈显著正相关,氨氮(NH~+_4-N)、亚硝氮(NO~-_2-N)、硝态氮(NO~-_3-N)和电导率(EC)是影响厌氧氨氧化菌基因丰度的重要因子;相对丰度与C∶P、N∶P比值呈显著正相关,C∶N比值、总碳(TC)和电导率(EC)是影响厌氧氨氧化菌基因相对丰度的重要因子.综上,针对厌氧氨氧化菌16S rRNA定量分析在一定程度上揭示了红树林湿地厌氧氨氧化菌基因丰度、相对丰度与环境因子的耦合关系.
        Anaerobic ammonia oxidation(anammox) process as the effective pathway of promoting the nitrogen removal play the important role in the process of coastal ecosystem nitrogen balance. In this study, the existence characteristics of anammox bacteria genes abundance and relative abundance in wastewater treatment process from mangrove wetland were investigated based on quantitative real-time PCR(qPCR) and environmental factors analysis. The results showed that anammox bacteria genes was detected in the all samples from the mangrove wetland sediment at 0~65 cm depth. Although the obvious distribution regulation of anammox bacteria genes absolute abundance and relative abundance along with the increase of distance from sewage outlet and depth was not be found, the correlation analysis showed that the spatial abundance and relative abundance distribution of anammox bacteria genes was closely related to environmental factors. In term of absolute abundance, anammox bacteria genes abundance was significantly positively correlated with total nitrogen(TN), total carbon(TC) and total organic carbon(TOC), and ammonia nitrogen(NH~+_4-N), nitrite nitrogen(NO~-_2-N), nitrate nitrogen(NO~-_3-N) and electrical conductivity(EC) can also affect the abundance of anammox bacteria genes. In term of relative abundance, the relative abundance of anammox bacteria genes was significantly positively correlated with C∶P and N∶P ratio, and total carbon(TC), C∶N ratio and electrical conductivity(EC) can also affect the relative abundance of anammox bacteria genes. To summarize, the relationship between anammox bacteria genes abundance, relative abundance and environmental factors was revealed by the quantitative analysis of anammox bacteria 16 S rRNA in a certain degree.
引文
Broda E. 1977. Two kinds of lithotrophs missing in nature[J]. Journal of Basic Microbiology, 17: 491-493
    Dalsgaard T, Canfield D E, Petersen J, et al. 2003. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica[J]. Nature, 422(6932):606-608
    Dale O R, Tobias C R, Song B. 2009. Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Esturay[J]. Environmental Microbiology, 11(5):1194-1207
    Emilio G R, Alfonso C, Sokratis P. 2014. A fast and direct spectroph-oTometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes[J]. Marine Chemistry, (162):30-36
    Fu B B, Liu J W, Yang H M, et al. 2015. Shift of anammox bacterial community structure along the Pearl Estuary and the impact of environmental factors[J]. Journal of Geophysical Research Oceans, 120(4): 2869-2883
    付璐璐, 甄毓, 贺惠, 等. 2016. 长江口邻近海域沉积物中厌氧氨氧化细菌分布特性研究[J]. 环境科学, 37(10):3914-3922
    Harris D, William R, Horwáth, et al. 2001. Acid fumigation of soils to remove carbonates prior to total organic carbon or Carbon-13 isotopic analysis[J]. Soil Science Society of America Journal, 65:1853-1856
    Hou L J, Zheng Y L, Liu M, et al. 2013. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary[J]. Journal of Geophysical Research Biogeosciences, 118(3):1237 -1246
    姜晓芳. 2017. 河口近岸厌氧氨氧化菌群结构、丰度及活性对盐度变化的响应[D]. 上海: 华东师范大学
    金亮, 吴明柔, 高梦岚, 等. 2018. 九龙江口红树林保护区水体浮游植物群落结构及营养状态评价[J]. 应用海洋学学报, 37(1):129-134
    刘广明, 杨劲松, 姚荣江. 2005. 影响土壤浸提液电导率的盐分化学性质要素及其强度研究[J]. 土壤学报, 42(2): 247-252
    Li M, Hong Y G, Cao H L, et al. 2011a. Mangrove trees affect the community structure and distribution of anammox bacteria at an anthropogenic-polluted mangrove in the Pear River Delta reflected by 16S rRNA and hydrazine oxidoreductase (HZO) encoding gene analysis[J]. Ecotoxicology, 20:1780-1790
    Li M, Cao H L, Hong Y G, et al. 2011b. Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16sRNA and hydrazine oxidoreductase genes[J]. Microbes and Environments, 26(1):15-22
    Murpgy J, Riley J P. 1962. Amodified single solution method for the determination of Phosphate in the natural water[J]. Analytica Chimica Acta, (27):31-36
    Mulder A. 1992. Anoxic ammonia oxidation[P]. US:5078884
    Nicholls J C, Trimmer M. 2009. Widespread occurrence of the anammox reaction estuarine sediments[J]. Aquatic Microbial Ecology, 55:105-113
    Nishijima M, Lindsay D J, Hata J, et al. 2010. Association of thioautotrophic bacteria with deep-sea sponges[J]. Marine Biotechnology, 12:253-260
    Schmid M C, Twachtmann U, Klein M, et al. 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Systematic and Applied Microbiology, 23:93-106
    Strous M, Jetten M S. 2004. Anaerobic oxidation of methane and ammonium[J]. Annual Review of Microbiology, 58:99-117
    Schmid M C, Maas B, Dapena A, et al. 2005. Biomarkers for in situ detection of anaerobic ammonium-oxidizing (Anammox) bacteria[J]. Applied and Environmental Microbiology, 71(4):1677-1684
    Shu Q L, Jiao N Z. 2010. Profiling planctomycetales diversity with reference to anammox-related bateria in a South Chian Sea, deep-sea sediment[J]. Marine Ecology, 29(4):413-420
    Shen L D, Liu S, Lou L P, et al. 2013. Broad distribution of diverse anaerobic ammonium-oxidizing bacteria in Chinese agricultural soils[J]. Applied and Environmental Microbiology, 79(19):6167-6172
    Shen L D, Liu S, Huang Q, et al. 2014. Evidence for the cooccurrence of nitrite- dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field[J]. Applied and Environmental Microbiology, 80(24):7611-7619
    Shen L D, Liu S, He Z F, et al. 2015. Depth-specific distribution and importance of nitrite-dependent anaerobic ammonium and methane-oxidising bacteria in an urban Wetland[J]. Soil Biology and Biochemistry, 83:43-51
    Thamdrup B, Dalsgaard T. 2002. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Applied and Environmental Microbiology, 68:1312-1318
    Van de Graaf A A, Mulder A, De Brujin P, et al. 1995. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Appllied Environmental Microbiology, 61:1246-1251
    Wang S Y, Zhu G B, Peng Y Z, et al. 2012. Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearil River Estuary[J]. Environmental Science and Technology, 46:8834-8842
    王静, 郝建安, 张爱君, 等. 2014. 厌氧氨氧化反应研究进展[J]. 水处理技术, 40(3):1-4
    夏超, 祝贵兵, 邹雨璇, 等. 2015. 厌氧氨氧化细菌和反硝化厌氧甲烷氧化细菌在岸边带土壤中的分布规律[J]. 环境科学学报, 35(12):3965-3975
    中国科学院南京土壤研究所. 1978. 土壤理化分析[M]. 上海:上海科学技术出版社
    Zhang Y, Ruan X H, Op den Camp H J M, et al. 2007. Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi river (China)[J]. Environmental Microbiology, 9(9):2375-2382
    张建旗, 张继娜, 杨虎德, 等. 2009. 兰州地区土壤电导率与盐分含量关系研究[J]. 甘肃林业科技, 34(2):21-24
    Zhu G B, Wang S Y, Wang Y, et al. 2011. Anaerobic ammonia oxidation in a fertilized paddy soil[J]. The ISME Journal, 5:1905-1912
    Zhou S, Borjigin S, Riya S, et al. 2014. The relationship between anammox and denitrification in the sediment of Aninland River[J]. Science of the Total Environment, 490:1029-1036
    郑艳玲. 2015. 长江口潮滩湿地氨氧化菌群动态和活性研究[D].上海: 华东师范大学
    曾静. 2016. 锡林河湿地厌氧氨氧化菌群多样性、丰度和空间特征研究[D]. 呼和浩特: 内蒙古大学
    庄林杰, 夏超, 田晴, 等. 2017. 高通量测序技术研究典型湖泊岸边陆向深层土壤中厌氧氨氧化细菌的群落结构[J]. 环境科学学报, 37(1):261-271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700