用户名: 密码: 验证码:
不同植物类型复合垂直流人工湿地根系微生物群落结构的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microbial community structure in the roots of three kinds of plants in integrated vertical flow constructed wetlands
  • 作者:蒋旭瑶 ; 吉喜燕 ; 黄德英 ; 张继彪
  • 英文作者:JIANG Xu-yao;JI Xi-yan;HUANG De-ying;ZHANG Ji-biao;Department of Environmental Science and Engineering, Fudan University;Department of Chemistry, Fudan University;
  • 关键词:人工湿地 ; 微生物群落 ; Chao1指数 ; 上行池 ; 下行池
  • 英文关键词:constructed wetlands;;microbial communities;;Chao1 index;;up-flow cell;;down-flow cell
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:复旦大学环境科学与工程系;复旦大学化学系;
  • 出版日期:2019-01-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.281
  • 基金:贵州省科技支撑计划课题(黔科合支撑[2017]2859)~~
  • 语种:中文;
  • 页:NHBH201901024
  • 页数:8
  • CN:01
  • ISSN:12-1347/S
  • 分类号:182-189
摘要
为探讨湿地植物种类及季节变化对复合垂直流人工湿地根系微生物群落结构的影响,采用微生物多样性测序技术对菖蒲(Acorus calamus L.)湿地、美人蕉(Canna indica L.)湿地和水葱(Scirpus validus Vahl)湿地根系微生物群落结构进行研究。结果表明,三种湿地植物根系微生物丰富度秋季>夏季>冬季。水葱湿地上、下行池根系微生物丰富度差异不大,菖蒲湿地和美人蕉湿地(除10月份外)下行池丰富度比上行池高。不同池子的微生物群落成员相似,且上行池样本相似性比下行池样本相似性高。从属水平上,被检测到的硝化细菌有Nitrospira和Candidatus Nitrosophaera。反硝化细菌有Dechloromonas、Flavobacterium和Pseudomonas等。除美人蕉湿地下行池外,秋季的菖蒲湿地和水葱湿地根系硝化细菌相对丰度均高于夏季和冬季。研究结果可为人工湿地的运行优化提供参考。
        The aim of this study is to analyze the microbial community structure in the roots of Acorus calamus L., Canna indica L., and Scirpus validus Vahl wetlands using microbial diversity sequencing technology. The abundance of root microorganisms in autumn were higher than that in summer, followed by that in winter. There was no obvious difference in microorganism relative abundances between up-flow and down-flow cells in Scirpus validus Vahl wetland. Down-flow cells of Acorus calamus L. and Canna indica L. wetlands showed higher abundances of root microorganisms than those of up-flow cells, except for Canna indica L. wetland in October. The microbial community members were similar in different cells. Furthermore, the similarity between up-flow cells was higher than that between down-flow cells. At the genus level, Nitrospira and Candidatus Nitrosophaera, which are nitrifying bacteria, were detected, and Dechloromonas, Flavobacterium, and Pseudomonas, as denitrifying bacteria, were detected. Except for the down-flow cells of Canna indica L.wetland, the relative abundances of nitrifying bacteria in Acorus calamus L. wetland and Scirpus validus Vahl wetland in autumn were higher than those in summer. This study could provide some help for improving the microbial community structure of constructed wetlands.
引文
[1] Pelissari C,ávila C, Trein C M, et al. Nitrogen transforming bacteria within a full-scale partially saturated vertical subsurface flow constructed wetland treating urban wastewater[J]. Science of the Total Environment, 2016, 574:390-399.
    [2] Chen Y, Wen Y, Tang Z, et al. Effects of plant biomass on bacterial community structure in constructed wetlands used for tertiary wastewater treatment[J]. Ecological Engineering, 2015, 84:38-45.
    [3] Wu J, Zhang J, Jia W, et al. Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater[J]. Bioresource Technology, 2009, 100(12):2910-2917.
    [4] Ibekwe A M, Lyon S R, Leddy M, et al. Impact of plant density and microbial composition on water quality from a free water surface constructed wetland[J]. Journal of Applied Microbiology, 2007, 102(4):921-936.
    [5] Stottmeister U, Wie?ner A, Kuschk P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances, 2003, 22(1/2):93-117.
    [6] Ligi T, Oopkaup K, Truu M, et al. Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing[J]. Ecological Engineering, 2014, 72:56-66.
    [7] Truu M, Juhanson J, Truu J. Microbial biomass, activity and community composition in constructed wetlands[J]. Science of the Total Environment, 2009, 407(13):3958-3971.
    [8]刘超翔,董春宏.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学, 2003, 24(1):80-83.LIU Chao-xiang, DONG Chun-hong. Study on ability of nitrification in a subsurface constructed wetland system treating sewage[J]. Environmental Science, 2003, 24(1):80-83.
    [9]雷旭,李冰,李晓,等.复合垂直流人工湿地系统中不同植物根际微生物群落结构[J].生态学杂志, 2015, 34(5):1373-1381.LEI Xu, LI Bing, LI Xiao, et al. Rhizosphere microbial communities of three plants in vertical-flow constructed wetland[J]. Chinese Journal of Ecology, 2015, 34(5):1373-1381.
    [10] Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437:376-380.
    [11] Shaw A G, Sim K, Powell E, et al. Latitude in sample handling and storage for infant faecal microbiota studies:The elephant in the room[J]. Microbiome, 2016, 4(1):40
    [12]刘志伟,周美修,宋俊玲,等.复合垂直流人工湿地污染物去除特征及微生物群落多样性分析[J].环境工程, 2014, 32(6):38-42.LIU Zhi-wei, ZHOU Mei-xiu, SONG Jun-ling, et al. Pollutants removal characteristics and analysis of microbial community diversity in integrated vertical-flow constructed wetland[J]. Environmental Engineering, 2014, 32(6):38-42.
    [13]黄德锋,李田,陆斌.复合垂直流人工湿地污染物去除及微生物群落结构的PCR-DGGE分析[J].环境科学研究, 2007, 20(6):137-141.HUANG De-feng, LI Tian, LU Bin. Pollutants removal and analysis of structure changes of microbial community in integrated verticalflow constructed wetland[J]. Research of Environmental Sciences,2007, 20(6):137-141.
    [14] Wang Q, Xie H, Ngo H H, et al. Microbial abundance and community in subsurface flow constructed wetland microcosms:Role of plant presence[J]. Environmental Science&Pollution Research International, 2016, 23(5):1-10.
    [15] Yuan J, Dong W, Sun F, et al. Bacterial communities and enzymatic activities in the vegetation-activated sludge process(V-ASP)and related advantages by comparison with conventional constructed wetland[J]. Bioresource Technology, 2016, 220:341-351.
    [16] Ansola G, Arroyo P, Le S D M. Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands[J]. Science of the Total Environment, 2014, 473-474(3):63-71.
    [17] Hugenholtz P, Goebel B M, Pace N R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity[J].Journal of Bacteriology, 1998, 180(18):4765-4774.
    [18] Ma Q, Qu Y Y, Zhang X W, et al. Identification of the microbial community composition and structure of coal-mine wastewater treatment plants[J]. Microbiological Research, 2015, 175:1-5.
    [19] Pynaert K, Smets B F, Wyffels S, et al. Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lab-scale rotating biological contactor[J]. Applied&Environmental Microbiology,2003, 69(6):3626-3635.
    [20] Vaz-Moreira I, Silva M E, Manaia C M, et al. Diversity of bacterial isolates from commercial and homemade vomposts[J]. Microbial Ecology, 2008, 55(4):714-722.
    [21] Liessens J, Vanbrabant J, Vos P D, et al. Mixed culture hydrogenotrophic nitrate reduction in drinking water[J]. Microbial Ecology, 1992,24(3):271-290.
    [22] Lai Q, Shao Z. Pseudomonas xiamenensis sp. nov., a denitrifying bacterium isolated from activated sludge[J]. International Journal of Systematic&Evolutionary Microbiology, 2008, 58(8):1911-1915.
    [23] Drysdale G D, Kasan H C, Bux F. Denitrification by heterotrophic bacteria during activated sludge treatment[J]. Water SA, 1999, 25(3):357-362.
    [24] Hayatsu M, Tago K, Saito M. Various players in the nitrogen cycle:Diversity and functions of the microorganisms involved in nitrification and denitrification[J]. Soil Science&Plant Nutrition, 2008, 54(1):33-45.
    [25] Pang S, Zhang S, Lv X Y, et al. Characterization of bacterial community in biofilm and sediments of wetlands dominated by aquatic macrophytes[J]. Ecological Engineering, 2016, 97:242-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700