用户名: 密码: 验证码:
双级式光伏发电主动参与电网频率调节
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Double-stage grid-connected photovoltaic generation taking part in grid frequency regulation actively
  • 作者:李旭涛 ; 贾祺 ; 项丽 ; 田蓓
  • 英文作者:LI Xutao;JIA Qi;XIANG Li;TIAN Bei;Ningxia Electric Power Research Institute;Ningxia Key Laboratory of Electrical Energy Security;School of Electrical Engineering, Northeast Electric Power University;State Grid Ningxia Electric Power Co.Ltd.;
  • 关键词:双级式光伏发电 ; 频率调节 ; 下垂控制 ; 虚拟惯量控制 ; Boost变换器 ; 网侧逆变器
  • 英文关键词:double-stage grid-connected photovoltaic generation;;frequency regulation;;droop control strategy;;virtual inertial control strategy;;Boost converter;;grid-side inverter
  • 中文刊名:JDQW
  • 英文刊名:Power System Protection and Control
  • 机构:国网宁夏电力科学研究院;宁夏电力能源安全重点实验室;东北电力大学电气工程学院;国网宁夏电力有限公司;
  • 出版日期:2019-06-16
  • 出版单位:电力系统保护与控制
  • 年:2019
  • 期:v.47;No.534
  • 基金:国家自然科学基金项目资助(51277024);; 国家电网公司总部科技项目资助(5229DK17000W):光伏电站秒级功率扰动的频率和电压主动控制技术研究~~
  • 语种:中文;
  • 页:JDQW201912012
  • 页数:11
  • CN:12
  • ISSN:41-1401/TM
  • 分类号:106-116
摘要
为解决大规模光伏发电并网带来系统调频能力不足的问题,提出了双级式光伏发电有功功率-频率下垂控制和虚拟惯量控制,通过修改Boost变换器或网侧逆变器原有的控制结构来实现光伏发电主动参与电网频率调节。并分析虚拟惯性时间常数、锁相环控制带宽对虚拟惯量控制的影响。基于光伏发电的有功功率-相位运动模型、同步发电机组的频率响应模型来分析光伏发电的虚拟惯量特性及其对系统频率动态特性的影响。仿真结果表明:Boost变换器和网侧逆变器均可按照设定的下垂曲线来控制光伏阵列增发或减少一定量的有功功率,抑制电网频率跌落或升高;虚拟惯性时间常数越大或锁相环控制带宽越小,光伏发电的虚拟惯量越大,频率动态过程中可提供支撑的功率越多。
        In order to solve the problem of insufficient frequency regulation capacity caused by the large-scale grid-connected photovoltaic generation, the active power-frequency droop control strategy and virtual inertial control strategy are proposed for double-stage grid-connected photovoltaic generation, the original control structure of the Boost converter or the grid-side inverter is changed, so that the photovoltaic generation can actively participate in the grid frequency regulation. The influence of the virtual inertial time constant and the Phase-Locked Loop(PLL) bandwidth on the virtual inertial control is analyzed. The virtual inertial characteristics of photovoltaic generation are analyzed based on the active power-phase motion model of photovoltaic generation and the frequency response model of the synchronous generator, and their influence on the dynamic characteristics of the system frequency is also analyzed. Simulation results indicate that both the Boost converter and the grid-side inverter can control the photovoltaic array to increase or decrease the active power generated according to the set droop curve, so as to suppress the drop or rise of the grid frequency; larger virtual inertial time constant or smaller PLL bandwidth can lead to larger virtual inertia of photovoltaic generation and more power in the frequency dynamic process.
引文
[1]国家能源局.2017年光伏发电相关统计数据[EB/OL].[2018-01-24].www.nea.gov.cn/2018-01/24/c_136921015.htm.China National Energy Administration.Breakthrough of global solar energy market in 2017[EB/OL].[2018-01-24].www.nea.gov.cn/2018-01/24/c_136921015.htm.
    [2]国家发展和改革委员会能源研究所.中国2050高比例可再生能源发展情景暨路径研究[R].北京:国家发展和改革委员会能源研究所,2015.Energy Research Institute National Development and Reform Commission.China 2050 high renewable energy penetration scenario and roadmap study[R].Beijing:Energy Research Institute National Development and Reform Commission,2015.
    [3]陈国平,李明节,许涛,等.关于新能源发展的技术瓶颈研究[J].中国电机工程学报,2017,37(1):20-26.CHEN Guoping,LI Mingjie,XU Tao,et al.Study on technical bottleneck of new energy development[J].Proceedings of the CSEE,2017,37(1):20-26.
    [4]陈国平,李明节,许涛.我国电网支撑可再生能源发展的实践与挑战[J].电网技术,2017,41(10):3095-3103.CHEN Guoping,LI Mingjie,XU Tao.Practice and challenge of renewable energy development based on interconnected power grids[J].Power System Technology,2017,41(10):3095-3103.
    [6]ENTSO-E E-E.Network code for requirements for grid connection applicable to all generators[R].Nc Rfg,2013.
    [7]Hydro Quebec Transénergie.Transmission provider technical requirements for the connection of power plants to the hydro-Québec transmission system[R].Montréal:Hydro Quebec Transénergie,2009.
    [8]孙骁强,程松,刘鑫,等.西北送端大电网频率特性试验方法[J].电力系统自动化,2018,42(2):148-153.SUN Xiaoqiang,CHENG Song,LIU Xin,et al.Test method for frequency characteristics of Northwest Sending-end power grid[J].Automation of Electric Power Systems,2018,42(2):148-153.
    [9]路柒妮,王钰洁,杜先君.大规模光伏电站中箱式变电站对光伏组件的影响分析[J].电力系统保护与控制,2017,45(20):123-128.LU Ranni,WANG Yujie,DU Xianjun.Effects analysis of box-type substation on photovoltaic modules in large-scale photovoltaic power station[J].Power System Protection and Control,2017,45(20):123-128.
    [10]陈永华,陈汹,唐冠军.大型光伏电站逆变器组群调相控制方法的研究[J].智慧电力,2018,46(11):21-27.CHEN Yonghua,CHEN Xiong,TANG Guanjun.Research on phase modulation control method for inverter cluster in large-scale photovoltaic plant[J].Smart Power,2018,46(11):21-27.
    [11]吴峰,张涵.用户光伏发电储能优化配置研究[J].智慧电力,2018,46(7):1-6.WU Feng,ZHANG Han.Study on optimized configuration of energy storage for photovoltaic power generation[J].Smart Power,2018,46(7):1-6.
    [12]贾祺,赵彪,严干贵,等.基于高频链直流变压器的柔性中压直流配电系统分析[J].电力系统保护与控制,2016,44(16):90-98.JIA Qi,ZHAO Biao,YAN Gangui,et al.Analysis of flexible medium voltage DC power distribution system based on high-frequency-link DC solid state transformer[J].Power System Protection and Control,2016,44(16):90-98.
    [13]KAKIMOTO N,TAKAYAMA S,SATOH H.Power modulation of photovoltaic generator for frequency control of power system[J].IEEE Transactions on Energy Conversion,2009,24(4):943-949.
    [14]刘云,应康,辛焕海,等.基于二次插值法的光伏发电系统控制策略[J].电力系统自动化,2012,36(21):29-35.LIU Yun,YING Kang,XIN Huanhai,et al.A control strategy for photovoltaic generation system based on quadratic interpolation method[J].Automation of Electric Power Systems,2012,36(21):29-35.
    [15]ZARINA P P,MISHRA S,SEKHAR P C.Exploring frequency control capability of a PV system in a hybrid PV-rotating machine-without storage system[J].International Journal of Electrical Power&Energy Systems,2014,60(6):258-267.
    [16]SOTIRIOS I N,APOSTOLOS G.P,STAVROS A P.Ageneric model of two-stage grid-connected PV systems with primary frequency response and inertia emulation[J].Electric Power Systems Research,2015,127:186-196.
    [17]XUE Lyu,ZHAO Xu,JIAN Zhao,et al.Advanced frequency support strategy of photovoltaic system considering changing working conditions[J].IET Generation,Transmission&Distribution,2018,12(12):363-370.
    [18]王合桢,李向荣,陈栋新.电网频率特性及负荷反馈d f/dt的实测分析[J].电网技术,1995,19(12):43-47.WANG Hezhen,LI Xiangrong,CHEN Dongxin.Measurement and analysis for frequency characteristics and load frequency feedback d f/dt[J].Power System Technology,1995,19(12):43-47.
    [19]樊艳芳,钟显,常喜强,等.频率的时空分布对低频减载的影响研究[J].电力系统保护与控制,2015,43(1):55-60.FAN Yanfang,ZHONG Xian,CHANG Xiqiang,et al.Research of the UFLS under the frequency characteristics of temporal and spatial distribution[J].Power System Protection and Control,2015,43(1):55-60.
    [20]李军徽,冯喜超,严干贵,等.高风电渗透率下的电力系统调频研究综述[J].电力系统保护与控制,2018,46(2):163-170.LI Junhui,FENG Xichao,YAN Gangui,et al.Survey on frequency regulation technology in high wind penetration power system[J].Power System Protection and Control,2018,46(2):163-170.
    [21]袁小明,程时杰,胡家兵.电力电子化电力系统多时间尺度电压功角动态稳定问题[J].中国电机工程学报,2016,36(19):5145-5154.YUAN Xiaoming,CHENG Shijie,HU Jiabing.Multi-time scale voltage and power angle dynamics in power electronics dominated large power systems[J].Proceedings of the CSEE,2016,36(19):5145-5154.
    [22]YUAN Hao,YUAN Xiaoming,HU Jiabing.Modeling of grid-connected VSCs for power system small-signal stability analysis in DC-link voltage control timescale[J].IEEE Transactions on Power Systems,2017,32(5):3981-3991.
    [23]ANDERSON P M,MIRHEYDAR M.A low-order system frequency response model[J].IEEE Transactions on Power Systems,1990,5(3):720-729.
    [24]张恒旭,李常刚,刘玉田,等.电力系统动态频率分析与应用研究综述[J].电工技术学报,2010,25(11):169-176.ZHANG Hengxu,LI Changgang,LIU Yutian,et al.Reviews on power system dynamic frequency analysis and its application[J].Transaction of China Electrotechnical Society,2010,25(11):169-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700