用户名: 密码: 验证码:
赤霉素对拟南芥非生物逆境响应的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the response of GA to abiotic stress tolerance in Arabidopsis
  • 作者:董伟欣 ; 张迎迎
  • 英文作者:DONG Weixin;ZHANG Yingying;Hebei Radio and TV University;Horticultural Research Institute,Shanghai Academy of Agricultural Science;
  • 关键词:赤霉素 ; ELA1 ; ELA2 ; 拟南芥 ; 非生物逆境
  • 英文关键词:gibberellins;;ELA1;;ELA2;;arabidopsis;;abiotic tolerance
  • 中文刊名:NNXB
  • 英文刊名:Journal of Henan Agricultural University
  • 机构:河北广播电视大学;上海农业科学院园艺研究所;
  • 出版日期:2019-04-15
  • 出版单位:河南农业大学学报
  • 年:2019
  • 期:v.53;No.212
  • 基金:上海市农业科学院人才启动项目(LY1406)
  • 语种:中文;
  • 页:NNXB201902012
  • 页数:8
  • CN:02
  • ISSN:41-1112/S
  • 分类号:79-86
摘要
为了明确ELA1和ELA2基因调控植株对非生物逆境的响应,以过量表达ELA1和ELA2的转基因株系(ELA1-OE,ELA2-OE)为试验材料,观察叶片的表皮细胞、根毛区和下胚轴细胞差异性,并对其进行干旱胁迫、盐胁迫、高温胁迫、抗病诱导及对ABA的敏感性检测。结果表明,ELA1-OE和ELA2-OE转基因株系叶片的表皮细胞显著减小,单位面积的细胞数目明显增加;同时,根毛区和下胚轴细胞与对照(Col-0)相比明显缩短; ELA1-OE,ELA2-OE过表达株系的抗盐能力和抗干旱能力较对照明显增强,成活率提高,抗盐和抗旱成活率较对照分别显著提高了34. 69%和27. 27%,76. 67%和61. 67%,而抗高温能力却明显下降,ELA1-OE和ELA2-OE的抗高温成活率较对照分别显著降低了42. 25%和28. 17%。进一步检测相关抗盐、抗干旱和抗高温的标志基因,抗盐和抗旱的标志基因明显上调,相反,高温标志基因转录表达水平明显下调;同时ELA1-OE,ELA2-OE对不同浓度ABA的敏感性增强,但过表达株系的抗病能力较对照无明显变化。以上结果显示,拟南芥中的2个赤霉素代谢调控基因ELA1和ELA2通过调控植物体内的赤霉素含量参与调控植物的非生物逆境胁迫,进一步证明了赤霉素在植物非生物逆境胁迫中起着重要的调控作用。
        In order to clarify the response of plants regulated by ELA1 and ELA2 genes to abiotic stress,transgenic lines( ELA1-OE,ELA2-OE) were used as experimental materials to observe the epidermal cells of leaves,the root hair region and the hypocotyl cells and to determine the tolerance response to drought stress,salt stress,high temperature stress and sensitivity to abscisic acid( ABA).The results demonstrated that epidermal cells in leaves of ELA1-OE and ELA2-OE transgenic lines decreased significantly,meanwhile,the cell numbers of the unit area obviously increased compared with the wide-type( Col-0). The epidermal cells of the root hair area and hypocotyls were shorter than those of the wide-type. ELA1-OE and ELA2-OE transplants increased salt and drought tolerance significantly,and increased the survival rate as well. The survival rates of ELA1-OE and ELA2-OE increased by 34. 69% and 27. 27%,76. 67% and 61. 67% respectively compared with the control under salt and drought stress,while,the survival rate of ELA1-OE and ELA2-OE decreased by42. 25% and 28. 17% under high temperature respectively. The marker genes related to salt,droughtand high temperature resistance were detected,which were up-regulated under salt and drought stress,on the contrary,the transcription expression level of high temperature marker genes was significantly down-regulated. Consistent with the finding,the ELA1-OE and ELA2-OE with lower level of GA were hypersensitive to abscisic acid( ABA),however,no significant changes between the overexpression and wide-type were found,under biotic stress. All of the above results showed that gibberellin played an important role in plant abiotic stress.
引文
[1]ROBERT-SEILANIANTZ A,GRANT M,JONES J D.Hormone crosstalk in plant disease and defense:more than just jasmonate-salicylate antagonism[J].Annual Review of Phytopathology,2011,49(1):317-343.
    [2]VANSTRAELEN M,BENKOVA E.Hormonal interactions in the regulation of plant development[J].Annu Rev Cell Dev Biol,2012,28(28):463-487.
    [3]ACHARD P,CHENG H,DE GRAUWE L,et al.Integration of plant responses to environmentally activated phytohormonal signals[J].Science,2006,311(5757):91-94.
    [4]YANG D L,LI Q,DENG Y W,et al.Altered disease development in the eui mutants and Euioverexpressors indicates that gibberellins negatively regulate rice basal disease resistance[J].Molecular Plant,2008,1(3):528-537.
    [5]ACHARD P,RENOU J P,BERTHOME R,et al.Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species[J].Current Biology,2008,18(9):656-660.
    [6]MAGOME H,YAMAGUCHI S,HANADA A,et al.The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene,GA2ox7,under high-salinity stress in Arabidopsis[J].Plant Journal,2008,56(4):613-626.
    [7]ACHARD P,GONG F,CHEMINANT S,et al.The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism[J].The Plant Cell,2008,20(8):2117-2129.
    [8]YAMAUCHI Y,OGAWA M,KUWAHARA A,et al.Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds[J].Plant Cell,2004,16(2):367-378.
    [9]VANSTRAELEN M,BENKOVA E.Hormonal interactions in the regulation of plant development[J].Annu Rev Cell Dev Biol,2012,28(28):463-487.
    [10]杨东雷,董伟欣,张迎迎,等.赤霉素调节植物对非生物逆境的耐性[J].中国科学,2013,43(12):1119-1126.
    [11]ZHANG Y,ZHANG B,YAN D,et al.Two Arabidopsis cytochrome P450 monooxygenases,CYP714A1 and CYP714A2,function redundantly in plant development through gibberellin deactivation[J].Plant Journal,2011,67(2):342-353.
    [12]NOMURA T,MAGOME H,HANADA A,et al.Functional analysis of Arabidopsis CYP714A1 and CYP714A2reveals that they are distinct gibberellin modification enzymes[J].Plant Cell Physiology,2013,54(11):1837-1851.
    [13]KATAGIRI F,THILMONY R,HE S Y.The Arabidopsis thaliana-pseudomonas syringae interaction[M].Arabidopsis Book,2002,1:e0039.
    [14]VANDENBUSSCHE F,STRAETEN D V D.Shaping the shoot:a circuitry that integrates multiple signals[J].Trends in Plant Science,2004,9(10):499-506.
    [15]WEISS D,ORI N.Mechanisms of cross talk between gibberellin and other hormones[J].Plant Physiology,2007,144(3):1240-1246.
    [16]PISKUREWICZ U,JIKUMARU Y,KINOSHITA N,et al.The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and AB15 activity[J].Plant Signaling and Behavior,2008,20(10):2729-2745.
    [17]BALASUBRAMANIAN S,SURESHKUMAR S,LEMPEJ,et al.Potent induction of Arabidopsis thaliana flowering by elevated growth temperature[J].PLo S Genetics,2006,2(7):e106.
    [18]HUQ E,QUAIL P H.PIF4,a phytochrome-interacting b HLH factor functions as a negative regulator of phytochrome B signalling in Arabidopsis[J].Embo Journal,2002,21(10):2441-2450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700