用户名: 密码: 验证码:
钢铁生产流程物流-能流-环境作用机理及广义热力学优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interaction mechanism among material flows,energy flows and environment and generalized thermodynamic optimizations for iron and steel production processes
  • 作者:陈林根 ; 冯辉君 ; 谢志辉 ; 姜泽毅 ; 高峰 ; 徐安军 ; 张欣欣
  • 英文作者:CHEN LinGen;FENG HuiJun;XIE ZhiHui;JIANG ZeYi;GAO Feng;XU AnJun;ZHANG XinXin;Institute of Thermal Science and Power Engineering, Naval University of Engineering;Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering;College of Power Engineering, Naval University of Engineering;School of Mechanical Engineering, University of Science and Technology Beijing;College of Materials Science and Engineering, Beijing University of Technology;School of Metallurgy and Ecology Engineering, University of Science and Technology Beijing;
  • 关键词:广义热力学优化 ; 钢铁生产流程 ; 有限时间热力学 ; 构形理论 ; (火积)理论 ; 冶金流程工程学
  • 英文关键词:generalized thermodynamic optimization;;iron and steel production processes;;finite time thermodynamics;;constructal theory;;entransy theory;;metallurgical process engineering
  • 中文刊名:JEXK
  • 英文刊名:Scientia Sinica(Technologica)
  • 机构:海军工程大学热科学与动力工程研究室;海军工程大学舰船动力工程军队重点实验室;海军工程大学动力工程学院;北京科技大学机械工程学院;北京工业大学材料科学与工程学院;北京科技大学冶金与生态工程学院;
  • 出版日期:2018-02-20
  • 出版单位:中国科学:技术科学
  • 年:2018
  • 期:v.48
  • 基金:国家重点基础研究发展计划(编号:2012CB720405);; 国家自然科学基金(批准号:51506220,51579244)资助项目
  • 语种:中文;
  • 页:JEXK201802001
  • 页数:25
  • CN:02
  • ISSN:11-5844/TH
  • 分类号:5-29
摘要
将有限时间热力学、构形理论和(火积)理论等现代热学理论与冶金流程工程学相结合,提出钢铁生产流程广义热力学优化理论.在搭建钢铁流程能耗排放仿真平台和建立分析与生命周期评价结合的物流-能流-环境作用评价方法的基础上,基于钢铁生产流程广义热力学优化理论对单体组件、工序模块、功能子系统和流程进行物流-能流-环境作用机理研究,并开展多学科、多目标的广义热力学优化.优化后流程和工艺的选择、物流和能流的分配、余能余热综合利用更加合理,流程系统得到集成、运行调控更加合理,物流-能流-环境得到综合协调,实现流程能源的高效配置和余能的梯级利用,系统能耗和排放显著降低.本文通过探索钢铁生产流程高效、节能、减排技术途径为钢铁联合企业能源环保中心的设计运行提供了理论支撑,也为一般物质转化过程高效节能的相关共性问题的解决提供了研究平台,奠定了科学和技术基础.
        Combining modern thermodynamic theories, including finite time thermodynamics, constructal theory and entransy theory, with metallurgical process engineering, a generalized thermodynamic optimization theory for iron and steel production processes is proposed. The simulation platform for the energy consumption and emissions of the iron and steel production process is built, and the evaluation method of the material flows, energy flows and environment combining exergy analysis with life cycle assessment is established. On the basis of the new theory, simulation platform and evaluation method, interaction mechanism investigations for the material flows, energy flows and environment of the elemental packages, working procedure modules, functional subsystems and whole process of the iron and steel production processes are conducted, and multi-disciplinary and multi-objective generalized thermodynamic optimizations of them are also implemented. After optimizations, the selections of the processes and technologies,the distributions of the materials and energies as well as the utilizations of the residual energies and heats are more reasonable. The systems of the whole process are integrated, and the material flows, energy flows and environment are synthetically coordinated.Finally, the efficient allocation of the energies and the cascade utilization of the residual energies are realized, and the energy consumption and emissions of the whole system are significantly decreased. This paper can provide theoretical supports for the designs and operations of the energy and environmental protection center of the iron and steel enterprises by exploring the efficient,energy-saving and low emission technologies of the iron and steel production processes. It also can provide research platforms and lay science and technology bases for solving the common efficient energy-saving problems of the general material transformation processes.
引文
[1]陆钟武,蔡九菊.系统节能基础.沈阳:东北大学出版社,2010
    [2] Lin B Q,Wang X L.Carbon emissions from energy intensive industry in China:Evidence from the iron&steel industry.Renew Sust Energ Rev,2015,47:746-754
    3 Wu X,Zhao L,Zhang Y,et al.Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China.Appl Energ,2016,184:171-183
    4 Wang X L,Lin B Q.Factor and fuel substitution in China’s iron&steel industry:Evidence and policy implications.J Cleaner Prod,2017,141:751-759
    5张琦,蔡九菊,沈峰满.钢铁企业系统节能减排过程集成研究进展.中国冶金,2011,21:3.6
    6 Wang X L,Lin B Q.How to reduce CO2 emissions in China’s iron and steel industry.Renew Sust Energ Rev,2016,57:1496-1505
    7 Michaelis P,Jackson T,Clift R.Exergy analysis of the life cycle of steel.Energy,1998,23:213-220
    8 Costa M M,Schaeffer R,Worrell E.Exergy accounting of energy and materials flows in steel production systems.Energy,2001,26:363-384
    9陆钟武,蔡九菊,于庆波,等.钢铁生产流程的物流对能耗的影响.金属学报,2000,36:370.378
    10 Fruehan R J,Fortini O,Paxton H W,et al.Theoretical minimum energies to produce steel for selected conditions.Technical Report.Pittsburgh:Carnegie Mellon University,2000
    11 Larsson M,Dahl J.Reduction of the specific energy use in an integrated steel plant-The effect of an optimisation model.ISIJ Int,2003,43:1664-1673
    12 Larsson M.Process integration in the steel industry-Possibilities to analyse energy use and environmental impacts for an integrated steel mill.Dissertation of Doctoral Degree.Lulea:Lulea University of Technology,2004
    13 Larsson M,Ryman C.Adaptation of process integration models for minimisation of energy use,CO2-emissions and raw material costs for integrated steelmaking.Chem Eng Trans,2007,12:495-500
    14王建军.钢铁企业物质流、能量流及其相互关系研究与应用.博士学位论文.沈阳:东北大学,2008
    15韩晓威.典型钢铁制造流程二次能源利用和自发电模式.硕士学位论文.唐山:河北理工大学,2009
    16 Wang C,Larsson M,Ryman C,et al.A model on CO2 emission reduction in integrated steelmaking by optimization methods.Int J Energ Res,2008,32:1092-1106
    17张欣欣,时娜,冯妍卉,等.钢铁生产流程系统综合节能实例研究与分析.冶金能源,2010,29:3-7
    18 Zhang H,Dong L,Li H Q,et al.Investigation of the residual heat recovery and carbon emission mitigation potential in a Chinese steelmaking plant:A hybrid material/energy flow analysis case study.Sust Energ Technol Assess,2013,2:67-80
    19 Liu J Y,Li Y,Cai J J.Optimization model of power production side in iron and steel enterprises.Energy Dev Front,2013,2:72-79
    20 Lu B,Chen G,Chen D M,et al.An energy intensity optimization model for production system in iron and steel industry.Appl Thermal Eng,2016,100:285-295
    21 Wu J N,Wang R Q,Pu G Y,et al.Integrated assessment of exergy,energy and carbon dioxide emissions in an iron and steel industrial network.Appl Energ,2016,183:430-444
    22殷瑞钰.钢铁制造流程的本质、功能与钢厂未来发展模式.中国科学E辑:技术科学,2008,38:1365-1377
    23殷瑞钰.冶金流程工程学.第2版.北京:冶金工业出版社,2009
    24殷瑞钰.冶金流程集成理论与方法.北京:冶金工业出版社,2013
    25 Andresen B.Finite-Time Thermodynamics.Copenhagen:Physics Laboratory II,University of Copenhagen,1983
    26 Chen L G,Wu C,Sun F R.Finite time thermodynamic optimization or entropy generation minimization of energy systems.J Non-Equil Thermody,1999,24:327-359
    27 Chen L G,Sun F R.Advances in Finite Time Thermodynamics:Analysis and Optimization.New York:Nova Science Publishers,2004
    28陈林根.不可逆过程和循环的有限时间热力学分析.北京:高等教育出版社,2005
    29 Andresen B.Current trends in finite-time thermodynamics.Angew Chem Int Ed,2011,50:2690-2704
    30李俊,陈林根,戈延林,等.正反向两源热力循环有限时间热力学性能优化的研究进展.物理学报,2013,62:130501
    31陈林根,夏少军.不可逆过程的广义热力学动态优化.北京:科学出版社,2017
    32陈林根,夏少军.不可逆循环的广义热力学动态优化.北京:科学出版社,2017
    33 Ge Y L,Chen L G,Sun F R.Progress in finite time thermodynamic studies for internal combustion engine cycles.Entropy,2016,18:139
    34毕月红,陈林根.空气热泵性能有限时间热力学优化.北京:科学出版社,2017
    35 Bejan A.Entropy Generation Through Heat and Fluid Flow.New York:Wiley,1982
    36 Bejan A.Entropy Generation Minimization.Boca Raton FL:CRC Press,1996
    37 Bejan A.Entropy generation minimization:The new thermodynamics of finite-size devices and finite-time processes.J Appl Phys,1996,79:1191-1218
    38 Bejan A.Shape and Structure,from Engineering to Nature.Cambridge:Cambridge University Press,UK,2000
    39 Bejan A,Lorente S.Design with Constructal Theory.New Jersey:Wiley,2008
    40 Chen L G.Progress in study on constructal theory and its applications.Sci China Tech Sci,2012,55:802-820
    41 Bejan A,Lorente S.Constructal law of design and evolution:Physics,biology,technology,and society.J Appl Phys,2013,113:151301
    42 Bejan A.Constructal law:Optimization as design evolution.J Heat Transfer,2015,137:061003
    43 Bejan A.The Physics of Life:The Evolution of Everything.New York:St.Martin’s Press,2016
    44 Bejan A,Errera M R.Complexity,organization,evolution,and constructal law.J Appl Phys,2016,119:074901
    45陈林根,冯辉君.流动和传热传质过程的多目标构形优化.北京:科学出版社,2016
    46 Guo Z Y,Zhu H Y,Liang X G.Entransy-A physical quantity describing heat transfer ability.Int J Heat Mass Transfer,2007,50:2545-2556
    47 Chen L G.Progress in entransy theory and its applications.Chin Sci Bull,2012,57:4404-4426
    48 Chen Q,Liang X G,Guo Z Y.Entransy theory for the optimization of heat transfer-A review and update.Int J Heat Mass Transfer,2013,63:65-81
    49 Chen L G.Progress in optimization of mass transfer processes based on mass entransy dissipation extremum principle.Sci China Tech Sci,2014,57:2305-2327
    50 Cheng X T,Liang X G.Entransy:Its physical basis,applications and limitations.Chin Sci Bull,2014,59:5309-5323
    51 Cheng X T,Liang X G.Work entransy and its applications.Sci China Tech Sci,2015,58:2097-2103
    52 Zhang T,Liu X H,Tang H D,et al.Progress of entransy analysis on the air-conditioning system in buildings.Sci China Tech Sci,2016,59:1463-1474
    53 Radcenco V.Generalized Thermodynamics.Bucharest:Editura Technica,1994
    54 Chen L G,Bi Y H,Wu C.The influence of nonlinear flow resistance relations on the power and efficiency from fluid flow.J Phys D-Appl Phys,1999,32:1346-1349
    55 Chen L G,Feng H J,Xie Z H.Generalized thermodynamic optimization for iron and steel production processes:Theoretical exploration and application cases.Entropy,2016,18:353
    56 Reitlinger H B.Sur L’utilisation de la Chaleur Dans les MachinesàFeu.Liège,Belgium:Vaillant-Carmanne,1929
    57 Novikov I I.The efficiency of atomic power stations.Atommaya Energiya,1957,3:409-412
    58 Chambadal P.Les Centrales Nucleaires.Paris,France:Armand Colin,1957
    59 Curzon F L,Ahlborn B.Efficiency of a Carnot engine at maximum power output.Am J Phys,1975,43:22-24
    60 Chen L G,Sun F R,Wu C.Influence of internal heat leak on the power versus efficiency characteristics of heat engines.Energ Conv Manage,1997,38:1501-1507
    61 Chen L G,Sun F R,Wu C.Optimal allocation of heat-exchanger area for refrigeration and air-conditioning plants.Appl Energ,2004,77:339-354
    62 Ge Y L,Chen L G,Sun F R.Finite-time thermodynamic modelling and analysis of an irreversible Otto-cycle.Appl Energ,2008,85:618-624
    63 Xia S J,Chen L G,Sun F R.Optimization for entransy dissipation minimization in heat exchanger.Sci Bull,2009,54:3587-3595
    64 Chen L G,Feng H J,Sun F R.Exergoeconomic performance optimization for a combined cooling,heating and power generation plant with an endoreversible closed Brayton cycle.Math Comp Model,2011,54:2785-2801
    65 Xia S J,Chen L G,Sun F R.Entransy dissipation minimization for a class of one-way isothermal mass transfer processes.Sci China Tech Sci,2011,54:352-361
    66 Chen L,Xia S,Sun F.Maximum power output of multistage continuous and discrete isothermal endoreversible chemical engine system with linear mass transfer law.Int J Chem Reactor Eng,2011,9:1616
    67 Liu X W,Chen L G,Wu F,et al.Fundamental optimal relation of an irreversible quantum Carnot heat pump with spin-1/2 systems.Math Comp Model,2011,54:190-202
    68陈林根,孟凡凯,戈延林,等.半导体热电装置的热力学研究进展.机械工程学报,2013,49:144-154
    69 Chen L G,Ni D L,Zhang Z L,et al.Exergetic performance optimization for new combined intercooled regenerative Brayton and inverse Brayton cycles.Appl Thermal Eng,2016,102:447-453
    70 Zhou J L,Chen L G,Ding Z M,et al.Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines.Energy,2016,111:306-312
    71 Bejan A.Street network theory of organization in nature.J Adv Trans,1996,30:85-107
    72 Bejan A.Constructal-theory network of conducting paths for cooling a heat generating volume.Int J Heat Mass Transfer,1997,40:799-816
    73 Feng H J,Chen L G,Xie Z H,et al.Generalized constructal optimization for solidification heat transfer process of slab continuous casting based on heat loss rate.Energy,2014,66:991-998
    74 Wu W J,Chen L G,Sun F R.Heat-conduction optimization based on constructal theory.Appl Energ,2007,84:39-47
    75 Zhou S B,Chen L G,Sun F R.Optimization of constructal economics for volume-to-point transport.Appl Energ,2007,84:505-511
    76 Wei S H,Chen L G,Sun F R.“Volume-Point”heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element.Sci China Ser E-Tech Sci,2008,51:1283-1295
    77 Chen L G,Xiao Q H,Xie Z H,et al.Constructal entransy dissipation rate minimization for tree-shaped assembly of fins.Int J Heat Mass Transfer,2013,67:506-513
    78 Xie Z H,Chen L G,Sun F R.Constructal entropy generation rate minimization of line-to-line vascular networks with convective heat transfer.Int J Thermal Sci,2013,74:72-80
    79 Chen L G,Feng H J,Xie Z H,et al.Constructal optimization for“disc-point”heat conduction at micro and nanoscales.Int J Heat Mass Transfer,2013,67:704-711
    80 Feng H J,Chen L G,Xie Z H,et al.Constructal optimization for a single tubular solid oxide fuel cell.J Power Sources,2015,286:406-413
    81 Xie G N,Song Y D,Asadi M,et al.Optimization of pin-fins for a heat exchanger by entropy generation minimization and constructal law.J Heat Transfer,2015,137:061901
    82 Bejan A,Ziaei S,Lorente S.Distributed energy storage:Time-dependent tree flow design.J Appl Phys,2016,119:184901
    83 Chen L G,Yang A B,Xie Z H,et al.Constructal entropy generation rate minimization for cylindrical pin-fin heat sinks.Int J Thermal Sci,2017,111:168-174
    84 Chen Q,Ren J X.Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation.Chin Sci Bull,2008,53:3753-3761
    85 Liu X B,Wang M,Meng J A,et al.Minimum entransy dissipation principle for optimization of transport networks.Int J Nonlinear Sci Numer Simul,2010,11:113-120
    86程雪涛,徐向华,梁新刚.广义流动中的积原理.物理学报,2011,60:118103
    87 Xie Z H,Chen L G,Sun F R.Comparative study on constructal optimizations of T-shaped fin based on entransy dissipation rate minimization and maximum thermal resistance minimization.Sci China Tech Sci,2011,54:1249-1258
    88 Xiao Q H,Chen L G,Sun F R.Constructal entransy dissipation rate minimization for“disc-to-point”heat conduction.Chin Sci Bull,2011,56:102-112
    89陈林根,田凤红,肖庆华,等.基于横截面流道矩形单元体的积耗散率最小传质构形优化.热科学与技术,2012,11:136-141
    90 Xu M T.Variational principles in terms of entransy for heat transfer.Energy,2012,44:973-977
    91 Feng H J,Chen L G,Xie Z H,et al.Thermal insulation constructal optimization for steel rolling reheating furnace wall based on entransy dissipation extremum principle.Sci China Tech Sci,2012,55:3322-3333
    92 Jia H,Liu Z C,Liu W,et al.Convective heat transfer optimization based on minimum entransy dissipation in the circular tube.Int J Heat Mass Transfer,2014,73:124-129
    93 Cheng X T,Liang X G.Entransy variation associated with work.Int J Heat Mass Transfer,2015,81:167-170
    94 Wang Y,He Y L,Yang W W,et al.Numerical analysis of flow resistance and heat transfer in a channel with delta winglets under laminar pulsating flow.Int J Heat Mass Transfer,2015,82:51-65
    95 Wu J.A new approach to determining the intermediate temperatures of endoreversible combined cycle power plant corresponding to maximum power.Int J Heat Mass Transfer,2015,91:150-161
    96 Chen Q,Wang Y F,Xu Y C.A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems.Appl Energ,2015,139:119-130
    97 Feng H J,Chen L G,Xie Z H,et al.Constructal entransy dissipation rate minimization for triangular heat trees at micro and nanoscales.Int JHeat Mass Transfer,2015,84:848-855
    98 Feng H J,Chen L G,Xie Z H,et al.Constructal entransy dissipation rate minimization for helm-shaped fin with inner heat sources.Sci China Tech Sci,2015,58:1084-1090
    99 Guo J F.Design analysis of supercritical carbon dioxide recuperator.Appl Energ,2016,164:21-27
    100 Gong S W,Chen L G,Xie Z H,et al.Constructal optimization of cylindrical heat sources with forced convection based on entransy dissipation rate minimization.Sci China Tech Sci,2016,59:631-639
    101 Feng H J,Chen L G,Xie Z H,et al.Constructal entransy dissipation rate minimization of a rectangular body with nonuniform heat generation.Sci China Tech Sci,2016,59:1352-1359
    102 Xia S J,Chen L G,Xie Z H,et al.Entransy dissipation minimization for generalized heat exchange processes.Sci China Tech Sci,2016,59:1507-1516
    103 Yang A B,Chen L G,Xie Z H,et al.Thermal performance analysis of non-uniform height rectangular fin based on constructal theory and entransy theory.Sci China Tech Sci,2016,59:1882-1891
    104 Xia S J,Chen L G,Sun F R.Optimization of equimolar reverse constant-temperature mass-diffusion process for minimum entransy dissipation.Sci China Tech Sci,2016,59:1867-1873
    105 Caputo A C,Cardarelli G,Pelagagge P M.Analysis of heat recovery in gas-solid moving beds using a simulation approach.Appl Thermal Eng,1996,16:89-99
    106 Zhang D H,Wang B X,Zhou N,et al.Cooling efficiency of laminar cooling system for plate mill.J Iron Steel Res Int,2008,15:24-28
    107 Jang J Y,Chiu Y W.3-D transient conjugated heat transfer and fluid flow analysis for the cooling process of sintered bed.Appl Thermal Eng,2009,29:2895-2903
    108 Chen W,Zhang Y Z,Wang B X.Optimisation of continuous casting process parameters based on coupled heat and stress model.Ironmak Steelmak,2010,37:147-154
    109 Helle H,Helle M,Saxén H.Nonlinear optimization of steel production using traditional and novel blast furnace operation strategies.Chem Eng Sci,2011,66:6470-6481
    110陈光,杨婷,丁毅,等.钢铁生产能量流解析及炼焦主要单元应用.冶金能源,2013,32:3-8
    111 Doctor Y N,Patil B T,Darekar A M.Review of optimization aspects for casting processes.Int J Sci Res,2015,4:2364-2368
    112 Liu Y,Yang J,Wang J,et al.Prediction,parametric analysis and bi-objective optimization of waste heat utilization in sinter cooling bed using evolutionary algorithm.Energy,2015,90:24-35
    113 Abdillah I L,Nurjannah I.Inter-rater reliability of wound care skills checklist in objective structured clinical examination.Int J Res Med Sci,2016,5:283-286
    114 Rajshekar Y,Alex T C,Sahoo D P,et al.Iron ore slime as an alternate coolant in steelmaking:Performance evaluation at commercial scale.JCleaner Production,2016,139:886-893
    115刘泽淼,谢志辉,张泽龙,等.焦化工序能耗及二氧化碳排放量计算及参数影响.钢铁研究,2016,44:1-4
    116 Liu C X,Xie Z H,Sun F R,et al.Optimization for sintering proportioning based on energy value.Appl Thermal Eng,2016,103:1087-1094
    117刘雄.钢铁生产流程的多目标广义构形优化.博士学位论文.武汉:海军工程大学,2016
    118 Feng H J,Chen L G,Liu X,et al.Constructal optimization of a sinter cooling process based on exergy output maximization.Appl Thermal Eng,2016,96:161-166
    119 Shen X,Chen L G,Xia S J,et al.Numerical simulation and analyses for sinter cooling process with convective and radiative heat transfer.Int JEnergy Environ,2016,7:303-316
    120沈勋,陈林根,夏少军,等.竖罐式和环冷式烧结矿冷却过程的数值模拟.中国科学:技术科学,2016,46:36-45
    121刘雄.高炉炼铁过程的热力学优化模型及分析.硕士学位论文.武汉:海军工程大学,2013
    122秦晓勇,刘雄,陈林根,等.高炉利用系数目标优化模型的研究和应用.中国冶金,2014,24:5-10
    123 Liu X,Chen L G,Qin X Y,et al.Exergy loss minimization for a blast furnace with comparative analyses for energy flows and exergy flows.Energy,2015,93:10-19
    124 Liu X,Qin X Y,Chen L G,et al.CO2 emission optimization for a blast furnace considering plastic injection.Int J Energy Environ,2015,6:175-190
    125张子煜.高炉炼铁工序的热力学分析与优化.硕士学位论文.武汉:海军工程大学,2014
    126张子煜,秦晓勇,陈林根,等.以降低能耗为目标的高炉炼铁工序的优化.钢铁研究,2016,44:1-5
    127 Liu X,Chen L G,Feng H J,et al.Constructal design of a blast furnace iron-making process based on multi-objective optimization.Energy,2016,109:137-151
    128 Liu X,Feng H J,Chen L G,et al.Hot metal yield optimization of a blast furnace based on constructal theory.Energy,2016,104:33-41
    129 Chen L G,Liu X,Feng H J,et al.Molten steel yield optimization of a converter based on constructal theory.In:Proceeding Energy Engineering,Economics and Policy.Orlando,2017
    130 Liu X,Feng H J,Chen L G,et al.Constructal design of a converter steel-making procedure based on multi-objective optimization.In:Proceeding Energy Engineering,Economics and Policy.Orlando,2017
    131冯辉君,陈林根,丁泽民,等.基于Matlab的板坯连铸凝固传热过程及热损失研究.连铸,2013,6:16-22
    132 Feng H J,Chen L G,Xie Z H,et al.Generalized constructal optimization for the secondary cooling process of slab continuous casting based on entransy theory.Sci China Tech Sci,2014,57:784-795
    133 Saiful Alam M,Wijayanta A T,Nakaso K,et al.Study on coal gasification with soot formation in two-stage entrained-flow gasifier.Int J Energ Environ Eng,2015,6:255-265
    134 Feng H J,Chen L G,Liu X,et al.Generalized constructal optimization of strip laminar cooling process based on entransy theory.Sci China Tech Sci,2016,59:1687-1695
    135冯辉君,陈林根,孙丰瑞.薄板坯连铸连轧流程数值分析.钢铁研究,2015,43:23-27
    136 Chan D Y L,Yang K H,Lee J D,et al.The case study of furnace use and energy conservation in iron and steel industry.Energy,2010,35:1665-1670
    137 Si M,Thompson S,Calder K.Energy efficiency assessment by process heating assessment and survey tool(PHAST)and feasibility analysis of waste heat recovery in the reheat furnace at a steel company.Renew Sust Energ Rev,2011,15:2904-2908
    138 Ma G,Cai J,Zeng W,et al.Analytical research on waste heat recovery and utilization of China’s iron&steel industry.Energ Procedia,2012,14:1022-1028
    139 Chen L G,Yang B,Shen X,et al.Thermodynamic optimization opportunities for the recovery and utilization of residual energy and heat in China’s iron and steel industry:A case study.Appl Thermal Eng,2015,86:151-160
    140王俊华,陈林根,孙丰瑞.回热式等温加热修正的Brayton循环功率与效率特性.热力透平,2013,42:112-118
    141王俊华,陈林根,孙丰瑞.高炉余能余热驱动内可逆中冷回热Brayton热电联产循环.经济性分析.燃气轮机技术,2013,26:1-12
    142张万里,陈林根,孙丰瑞.开式双轴燃气轮机循环的热力学优化.热力透平,2013,42:104-111
    143张泽龙,陈林根,戈延林,等.焦炉煤气驱动的回热式燃气轮机装置热力学分析.钢铁研究,2013,41:37-40
    144张泽龙,陈林根,孙丰瑞.回热式布雷顿-两平行逆布雷顿联合循环第一定律分析与优化.燃气轮机技术,2013,26:1-5
    145 Zhang Z L,Chen L G,Ge Y L,et al.Thermodynamic analysis for a regenerative gas turbine cycle in coking process.Int J Energy Environ,2014,5:701-708
    146王文华,陈林根,丁泽民,等.高炉煤气燃气轮机简单循环热力性能分析.热力透平,2014,43:276-280,290
    147张泽龙.钢厂余能余热利用布雷顿循环热力学分析与优化.博士学位论文.武汉:海军工程大学,2015
    148 Zhang Z L,Chen L G,Yang B,et al.Thermodynamic analysis and optimization of an air Brayton cycle for recovering waste heat of blast furnace slag.Appl Thermal Eng,2015,90:742-748
    149王文华,陈林根,丁泽民,等.恒温热源闭式燃气轮机中冷循环性能密度优化.工程热物理学报,2015,36:1617-1621
    150张泽龙,陈林根,王文华,等.回收熔渣余热的空气中冷布雷顿循环热力学分析.钢铁研究,2015,43:4-8
    151张泽龙,陈林根,杨博,等.高炉渣余热驱动空气布雷顿循环有限时间热力学分析.中国冶金,2015,25:16-21
    152 Wang J H,Chen L G,Ge Y L,et al.Power and power density analyzes of an endoreversible modified variable-temperature reservoir Brayton cycle with isothermal heat addition.Int J Low-Carbon Tech,2016,11:42-53
    153杨博,陈林根,孙丰瑞.高炉余能余热驱动ICR Brayton CHP装置的.经济性能优化.电力与能源,2013,34:317-320
    154杨博.布雷顿热电和热电冷联产装置有限时间热力学分析与优化.博士学位论文.武汉:海军工程大学,2014
    155 Yang B,Chen L G,Ge Y L,et al.Exergy performance optimization of an irreversible closed intercooled regenerative brayton cogeneration plant.Arab J Sci Eng,2014,39:6385-6397
    156 Yang B,Chen L G,Ge Y L,et al.Finite-time exergoeconomic performance of a real intercooled regenerated gas turbine cogeneration plant.Part
    2:Heat conductance distribution and pressure ratio optimization.Int J Low-Carbon Tech,2014,9:262-267
    157 Yang B,Chen L G,Ge Y L,et al.Exergy performance analyses of an irreversible two-stage intercooled regenerative reheated closed Brayton CHP plant.Int J Exergy,2014,14:459-483
    158 Yang B,Chen L G,Sun F R.Exergetic performance optimization of an endoreversible variable-temperature heat reservoirs intercooled regenerated Brayton cogeneration plant.J Energ Institute,2016,89:1-11
    159杨博,陈林根,王文华,等.考虑压降的开式布雷顿CHP装置性能优化.机械工程学报,2016,52:166-175
    160 Feng H J,Tao G S,Chen L G,et al.Exergoeconomic optimal performance of a real regenerative gas turbine closed-cycle heat and power cogeneration plant.In:ASME International Mechanical Engineering Congress and Exposition(IMECE)Conference.Tampa,2017
    161 Chen L G,Yang B,Feng H J,et al.Modelling,analyses and optimization for exergy performance an irreversible intercooled regenerated Brayton CHP plant.Part 1.Thermodynamic modeling and parametric analyses.In:ASME International Mechanical Engineering Congress and Exposition(IMECE)Conference.Tampa,2017
    162 Yang B,Chen L G,Feng H J,et al.Modelling,analyses and optimization for exergy performance an irreversible intercooled regenerated Brayton CHP plant.Part 2.Performance optimization.In:ASME International Mechanical Engineering Congress and Exposition(IMECE)Conference.Tampa,2017
    163陈林根,杨博,谢志辉,等.高炉余能余热驱动回热布雷顿CCHP装置.分析.钢铁研究,2013,41:9-13
    164杨博,陈林根,王文华,等.高炉余能余热驱动内可逆回热布雷顿循环热电冷联产装置的最优.性能.燃气轮机技术,2013,26:26-33
    165 Yang B,Chen L G,Ge Y L,et al.Exergy analyses of an endoreversible closed regenerative Brayton cycle CCHP plant.Int J Energy Environ,2014,5:655-668
    166杨博,陈林根,孙丰瑞.开式回热燃气轮机热电冷联产装置性能分析与优化.热力透平,2014,43:193-198,208
    167陈林根,杨博,谢志辉,等.转炉煤气驱动开式燃气轮机CCHP装置FTT建模与优化.中国冶金,2014,24:50-58
    168杨博,陈林根,孙丰瑞.不可逆回热布雷顿CCHP装置FTT建模.热科学与技术,2015,14:239-249
    169 Chen L G,Yang B,Ding Z M,et al.Performance investigation of an open simple-cycle gas turbine CCHP plant driven by basic oxygen furnace gas in China’s steelmaking plants.In:ASME International Mechanical Engineering Congress and Exposition(IMECE)Conference.Tampa,2017170陈林根,孟凡凯,孙丰瑞,等.热电发电技术回收钢铁工业余热节能潜力分析.钢铁研究,2013,41:41-43,58
    171孟凡凯,陈林根,杨博,等.烧结烟气余热热电发电模型与数值模拟.工程热物理学报,2014,35:2323-2328
    172 Meng F K,Chen L G,Sun F R,et al.Thermoelectric power generation driven by blast furnace slag flushing water.Energy,2014,66:965-972
    173熊兵.工业余热驱动两级热电发电装置热力学分析与优化.硕士学位论文.武汉:海军工程大学,2014
    174 Xiong B,Chen L G,Meng F K,et al.Modeling and performance analysis of a two-stage thermoelectric energy harvesting system from blast furnace slag water waste heat.Energy,2014,77:562-569
    175 Chen L G,Meng F K,Sun F R.Thermodynamic analyses and optimization for thermoelectric devices:The state of the arts.Sci China Tech Sci,2016,59:442-455
    176 Meng F K,Chen L G,Sun F R.Effects of thermocouples’physical size on the performance of the TEG-TEH system.Int J Low-Carbon Tech,2016,11:375-382
    177熊兵,陈林根,孟凡凯,等.烧结烟气余热驱动圆筒式两级热电发电装置热力学分析与优化.中国科学:技术科学,2016,46:293-301
    178孟凡凯,陈林根,谢志辉,等.钢铁工业余热回收过程的用能合理性评价.见:中国工程热物理学会工程热力学与能源利用学术会议论文集.厦门,2015
    179孟凡凯,陈林根,谢志辉,等.钢铁工业余热回收技术的评价指标体系.中国冶金,2015,25:76-81
    180 Wu L,Zhou W,Cheng H,et al.The study of structure optimization of blast furnace cast steel cooling stave based on heat transfer analysis.Appl Math Model,2007,31:1249-1262
    181高泽平,苏振江.大方坯连铸结晶器浸入式水口结构优化.炼钢,2008,24:42-45
    182张美杰,林小龙,黄奥,等.六流中间包场协同分析及流场优化.特殊钢,2009,30:1-4
    183 Kang D H,Lorente S,Bejan A.Constructal distribution of multi-layer insulation.Int J Energ Res,2013,37:153-160
    184 Jiang Z Y,Chen P Y,Liu P,et al.Numerical simulation and structure optimization of converter gas evaporative cooler.In:Proceedings of 2013Summer Heat Transfer Conference.Minneapolis,2013
    185 Kumar A N.Heat transfer analysis of blast furnace refractory lining.Dissertation of Masteral Degree.Odisha:National Institute of Technology Rourkela,2014
    186 Feng H J,Chen L G,Xie Z H,et al.Constructal entransy optimizations for insulation layer of steel rolling reheating furnace wall with convective and radiative boundary conditions.Chin Sci Bull,2014,59:2470-2477
    187 Feng H J,Chen L G,Xie Z H,et al.Constructal entransy dissipation rate minimization for variable cross-section insulation layer of the steel rolling reheating furnace wall.Int Commun Heat Mass Transfer,2014,52:26-32
    188冯辉君,陈林根,谢志辉,等.基于理论的轧钢加热炉壁变截面绝热层构形优化.物理学报,2015,64:054402
    189 Feng H J,Chen L G,Xie Z H,et al.Constructal designs for insulation layers of steel rolling reheating furnace wall with convective and radiative boundary conditions.Appl Thermal Eng,2016,100:925-931
    190 Liu X,Chen L G,Feng H J,et al.Constructal design for blast furnace wall based on the entransy theory.Appl Thermal Eng,2016,100:798-804
    191 Feng H J,Chen L G,Xie Z H,et al.“Disc-point”heat and mass transfer constructal optimization for solid-gas reactors based on entropy generation minimization.Energy,2015,83:431-437
    192 Feng H J,Chen L G,Xie Z H,et al.Constructal entransy dissipation rate minimization for solid-gas reactors with heat and mass transfer in a disc-shaped body.Int J Heat Mass Transfer,2015,89:24-32
    193 Chen L G,Shen X,Xia S J,et al.Thermodynamic analyses for recovering residual heat of high-temperature basic oxygen gas(BOG)by the methane reforming with carbon dioxide reaction.Energy,2017,118:906-913
    194 Sun B X,Nie Z R,Gao F.Cumulative exergy consumption(CExC)analysis of energy carriers in China.Int J Exergy,2014,15:196-213
    195 Sun B,Liu Y,Nie Z R,et al.Exergy-based model for quantifying land resource in China:A case study of sintered brick.Int J Exergy,2014,15:429-446
    196 Zhang Y J,Gao F,Wang Z H.Updated resource depletion characterization factors for life cycle assessment-case studies on iron and steel production in China.Mater Sci Forum,2016,847:358-365
    197 Hu J Y,Gao F,Wang Z H,et al.Life cycle assessment of steel production.Mater Sci Forum,2014,787:102-105
    198 Sun B X,Nie Z R,Liu Y,et al.Research on life cycle CO2 emissions of energy carriers in China.Mater Res Innov,2014,18:S4-56-S4-61
    199 Swinerd C,McNaught K R.Design classes for hybrid simulations involving agent-based and system dynamics models.Simul Model Pract Theor,2012,25:118-133
    200 Liu C X,Xie Z H,Sun F R,et al.System dynamics analysis on characteristics of iron-flow in sintering process.Appl Thermal Eng,2015,82:206-211
    201刘长鑫,谢志辉,孙丰瑞,等.炼铁工序铁素流的系统动力学分析.钢铁研究,2014,42:5-8
    202刘长鑫,谢志辉,孙丰瑞,等.转炉炼钢工序的铁素流系统动力学分析.中国冶金,2015,25:4-8
    203刘长鑫.基于系统动力学的钢铁生产流程铁素流特性研究.硕士学位论文.武汉:海军工程大学,2013
    204朱正海,仇圣桃,干勇,等.连铸-热轧区段大板坯温度变化规律研究.钢铁,2009,44:31-35
    205杨业建,姜泽毅,张欣欣.钢坯热轧加热炉区生产调度模型与算法.北京科技大学学报,2012,7:841-846
    206刘成,徐安军,贺东风,等.铁包加盖对铁水温降影响研究.见:第十八届(2014年)全国炼钢学术会议.西安,2014
    207邓帅,徐安军,周东升.沙钢永新炼钢厂“准层流”式生产模式分析.见:第十八届(2014年)全国炼钢学术会议.西安,2014
    208蔡峻,汪红兵,徐安军.炼钢厂钢包红包出钢率的影响因素仿真.钢铁研究学报,2014,87:191-200
    209冯凯,贺东风,徐安军,等.基于钢包运行稳定性的炼钢厂生产计划优化.东北大学学报(自然科学版),2015,36:1619-1623
    210冯凯,贺东风,徐安军,等.钢包调度评价方法研究.东北大学学报(自然科学版),2015,36:1728-1732
    211 Feng K,He D F,Xu A J,et al.End temperature prediction of molten steel in LF based on CBR-BBN.Steel Res Int,2016,87:79-86
    212 Feng K,He D F,Xu A J,et al.End temperature prediction of molten steel in RH based on case-based reasoning with optimized case base.J Iron Steel Res Int,2015,22:68-74
    213陈贤哲,徐安军,钱卫忠.连铸坯热送热装过程的平面布置优化研究.见:第十八届(2014年)全国炼钢学术会议.西安,2014
    214 Wang P,Jiang Z Y,Liu Z T,et al.Modeling and optimizing energy utilization of steel production process:A hybrid petri net approach.Adv Mech Eng,2013,5:191963
    215 Wang P,Jiang Z Y,Geng X Y,et al.Dynamic material flow analysis of steel resources in China based on circular economy theory.Adv Mater Res,2013,813:64-71
    216 Wang P,Jiang Z Y,Geng X Y,et al.Quantification of Chinese steel cycle flow:Historical status and future options.Resour Conserv Recycl,2014,87:191-199
    217 Jin P,Jiang Z Y,Zhang X X,et al.Thermodynamic analysis method for iron and steel manufacturing system based on enthalpy balance.Adv Mater Res,2012,524-527:2056-2062
    218 Jiang Z Y,Zhang X X,Jin P,et al.Energy-saving potential and process optimization of iron and steel manufacturing system.Int J Energ Res,2013,35:2009-2018
    219汪鹏,姜泽毅,张欣欣,等.中国钢铁工业流程结构、能耗和排放长期情景预测.北京科技大学学报,2015,36:1683-1693
    220金鹏,姜泽毅,包成,等.炉顶煤气循环氧气高炉的能耗和碳排放.冶金能源,2015,34:11-18
    221 Jin P,Jiang Z,Bao C,et al.Mathematical modeling of the energy consumption and carbon emission for the oxygen blast furnace with top gas recycling.Steel Res Int,2016,87:320-329
    222 Jin P,Jiang Z Y,Bao C,et al.The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace.Resour Conserv Recycl,2017,117:58-65
    223刘泽淼.钢铁生产过程能耗及CO2排放建模与分析.硕士学位论文.武汉:海军工程大学,2015
    224陈林根,夏少军,谢志辉,等.钢铁冶金过程动态数学模型的研究进展.热科学与技术,2014,13:95-125
    225沈勋,陈林根,夏少军,等.钢铁流程能耗分析与节能技术的研究进展.节能,2015,34:4-11
    226 Shen X,Chen L G,Xia S J,et al.Iron ores matching analysis and optimization for iron-making system by taking energy consumption,CO2emission or cost minimization as the objective.Sci China Tech Sci,2017,60,doi:10.1007/s11431-017-9072-9
    227沈勋.基于物质流和能量流的钢铁流程能耗和排放特性分析与优化.博士学位论文.武汉:海军工程大学,2017
    228 Feng H J,Chen L G,Liu X,et al.Constructal design for an iron and steel production process based on the objectives of steel yield and useful energy.Int J Heat Mass Transfer,2017,111:1192-1205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700